Nav: Home

Study rules out DM destruction as origin of extra radiation in galaxy center

August 26, 2020

Irvine, Calif., Aug. 26, 2020 - The detection more than a decade ago by the Fermi Gamma Ray Space Telescope of an excess of high-energy radiation in the center of the Milky Way convinced some physicists that they were seeing evidence of the annihilation of dark matter particles, but a team led by researchers at the University of California, Irvine has ruled out that interpretation.

In a paper published recently in the journal Physical Review D, the UCI scientists and colleagues at Virginia Polytechnic Institute and State University and other institutions report that - through an analysis of the Fermi data and an exhaustive series of modeling exercises - they were able to determine that the observed gamma rays could not have been produced by what are called weakly interacting massive particles, most popularly theorized as the stuff of dark matter.

By eliminating these particles, the destruction of which could generate energies of up to 300 giga-electron volts, the paper's authors say, they have put the strongest constraints yet on dark matter properties.

"For 40 years or so, the leading candidate for dark matter among particle physicists was a thermal, weakly interacting and weak-scale particle, and this result for the first time rules out that candidate up to very high-mass particles," said co-author Kevork Abazajian, UCI professor of physics & astronomy.

"In many models, this particle ranges from 10 to 1,000 times the mass of a proton, with more massive particles being less attractive theoretically as a dark matter particle," added co-author Manoj Kaplinghat, also a UCI professor of physics & astronomy. "In this paper, we're eliminating dark matter candidates over the favored range, which is a huge improvement in the constraints we put on the possibilities that these are representative of dark matter."

Abazajian said that dark matter signals could be crowded out by other astrophysical phenomena in the Galactic Center - such as star formation, cosmic ray deflection off molecular gas and, most notably, neutron stars and millisecond pulsars - as sources of excess gamma rays detected by the Fermi space telescope.

"We looked at all of the different modeling that goes on in the Galactic Center, including molecular gas, stellar emissions and high-energy electrons that scatter low-energy photons," said co-author Oscar Macias, a postdoctoral scholar in physics and astronomy at the Kavli Institute for the Physics and Mathematics of the Universe at the University of Tokyo whose visit to UCI in 2017 initiated this project. "We took over three years to pull all of these new, better models together and examine the emissions, finding that there is little room left for dark matter."

Macias, who is also a postdoctoral researcher with the GRAPPA Centre at the University of Amsterdam, added that this result would not have been possible without data and software provided by the Fermi Large Area Telescope collaboration.

The group tested all classes of models used in the Galactic Center region for excess emission analyses, and its conclusions remained unchanged. "One would have to craft a diffuse emission model that leaves a big 'hole' in them to relax our constraints, and science doesn't work that way," Macias said.

Kaplinghat noted that physicists have predicted that radiation from dark matter annihilation would be represented in a neat spherical or elliptical shape emanating from the Galactic Center, but the gamma ray excess detected by the Fermi space telescope after its June 2008 deployment shows up as a triaxial, bar-like structure.

"If you peer at the Galactic Center, you see that the stars are distributed in a boxy way," he said. "There's a disk of stars, and right in the center, there's a bulge that's about 10 degrees on the sky, and it's actually a very specific shape - sort of an asymmetric box - and this shape leaves very little room for additional dark matter."

Does this research rule out the existence of dark matter in the galaxy? "No," Kaplinghat said. "Our study constrains the kind of particle that dark matter could be. The multiple lines of evidence for dark matter in the galaxy are robust and unaffected by our work."

Far from considering the team's findings to be discouraging, Abazajian said they should encourage physicists to focus on concepts other than the most popular ones.

"There are a lot of alternative dark matter candidates out there," he said. "The search is going to be more like a fishing expedition where you don't already know where the fish are."
Also contributing to this research project - which was supported by the National Science Foundation, the U.S. Department of Energy Office of Science and Japan's World Premier International Research Center Initiative - were Ryan Keeley, who earned a Ph.D. in physics & astronomy at UCI in 2018 and is now at the Korea Astronomy and Space Science Institute, and Shunsaku Horiuchi, a former UCI postdoctoral scholar in physics & astronomy who is now an assistant professor of physics at Virginia Tech.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit Additional resources for journalists may be found at

University of California - Irvine

Related Dark Matter Articles:

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.
Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.
Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.
Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.
New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.