Researchers pursue 'hidden pathology' to explain fatigue in multiple sclerosis

August 26, 2020

Up to 60 percent of patients with multiple sclerosis (MS) report that fatigue is the disease's most debilitating symptom. And yet, fatigue remains one of MS's mysteries -- despite its prevalence and significance, the root cause of the symptom remains unclear. In a study published in Neurology Neuroimmunology & Neuroinflammation, investigators from Brigham and Women's Hospital used positron emission technology (PET) imaging to look for brain's immune cells that may become erroneously activated in MS, leading to fatigue. The team describes a potential link to brain inflammation that may help explain the connection between MS and fatigue.

"Fatigue correlates poorly with the conventional markers of multiple sclerosis -- the brain lesions we see using magnetic resonance imaging (MRI) don't associate well with fatigue," said corresponding author Tarun Singhal, MD, a neurologist and nuclear medicine physician in the Department of Neurology and director of the PET Imaging Program in Neurologic Diseases at the Ann Romney Center for Neurologic Diseases at Brigham and Women's Hospital. "So we went searching for a hidden pathology; something that has gone undetected until now in the context of fatigue in MS."

Singhal and colleagues used a second-generation radioligand known as [F-18]PBR06 to conduct PET imaging. Singhal describes this tracer as a "radiolabel detective" that can snoop for clues. Once injected, the tracer travels to the brain, binds to abnormally activated immune cells called microglia (and to some extent, additionally, to other immune and support cells called astrocytes) and emits gamma rays that can be picked up by a scanner.

The team performed PET scans on 12 MS patients and 10 healthy controls, finding strong correlations between MS patients' self-reported fatigue risk scores and activation of immune cells in very specific regions of the brain. These regions included the substantia nigra -- which translates literally to "the dark substance." The substantia nigra is the site where dopamine is produced (dopaminergic neurons appear darker on pathology, giving the region its name). Dopamine plays many roles in the body and is required for stimulating attention and wakefulness patterns in the brain. Several additional areas of the brain also correlated significantly with fatigue scores, but there was no association between fatigue scores and brain atrophy and lesion load in MS patients.

The researchers note that given the study's small sample size, additional study is needed to validate their findings.

"We detected a widespread network of very specific regions whose inflammation correlates with fatigue scores and all have implications for contributions to fatigue," said Singhal. "We are now pursuing further study to confirm our findings in a larger sample size and are looking at interactions between neurochemistry and neuroinflammation."
-end-
Funding for this work was provided by the Nancy Davis Foundation's 'Race to Erase MS' program, Ann Romney Center for Neurologic Diseases, Harvard NeuroDiscovery Center, and Water Cove Charitable Foundation.

Paper cited: Singhal T et al. "Regional Microglial Activation in Substantia Nigra is linked with Fatigue in Multiple Sclerosis" Neurol Neuroimmunol Neuroninflamm DOI: 10.1212/NXI.0000000000000854

Brigham and Women's Hospital

Related Multiple Sclerosis Articles from Brightsurf:

New therapy improves treatment for multiple sclerosis
A new therapy that binds a cytokine to a blood protein shows potential in treating multiple sclerosis, and may even prevent it.

'Reelin' in a new treatment for multiple sclerosis
In an animal model of multiple sclerosis (MS), decreasing the amount of a protein made in the liver significantly protected against development of the disease's characteristic symptoms and promoted recovery in symptomatic animals, UTSW scientists report.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

New therapeutic options for multiple sclerosis in sight
Strategies for treating multiple sclerosis have so far focused primarily on T and B cells.

Diet has an impact on the multiple sclerosis disease course
The short-chain fatty acid propionic acid influences the intestine-mediated immune regulation in people with multiple sclerosis (MS).

The gut may be involved in the development of multiple sclerosis
It is incompletely understood which factors in patients with multiple sclerosis act as a trigger for the immune system to attack the brain and spinal cord.

Slowing the progression of multiple sclerosis
Over 77,000 Canadians are living with multiple sclerosis, a disease whose causes still remain unknown.

7T MRI offers new insights into multiple sclerosis
Investigators from Brigham and Women's Hospital have completed a new study using 7 Tesla (7T) MRI -- a far more powerful imaging technology -- to further examine LME in MS patients

How to improve multiple sclerosis therapy
Medications currently used to treat multiple sclerosis (MS) can merely reduce relapses during the initial relapsing-remitting phase.

Vaccinations not a risk factor for multiple sclerosis
Data from over 12,000 multiple sclerosis (MS) patients formed the basis of a study by the Technical University of Munich (TUM) which investigated the population's vaccination behavior in relation to MS.

Read More: Multiple Sclerosis News and Multiple Sclerosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.