Biocomposites put the plant into the auto plant - and more

August 27, 2001

The gateway to widespread use of environmentally friendly materials won' be through the conscience as much as through the pocketbook.

Michigan State University researchers are finding ways to make tough, lightweight and versatile materials that can be fabricated into items ranging from automotive parts to tennis rackets to housing panels to furniture to bridges - all from plants and agricultural products.

The rapidly diminishing oil supply and increasing oil consumption in North America are driving researchers to look carefully at replacements for petro-chemical products.

This week at the 222nd National Conference of the American Chemical Society (ACS), MSU researchers are presenting four papers outlining methods to turn plants into composite materials, said Lawrence Drzal, director of the Composite Materials and Structures Center.

"There is a growing acceptance that there have to be more environmentally friendly processes and products," Drzal said. "But consumers aren't going to accept products based only on environmental considerations; these products must perform and be cost-effective to be competitive."

Two of MSU's papers deal with composite materials made with reinforcing fibers derived from plants and combined with petroleum-based plastics, and two papers present results that replace all of the petroleum-based plastic with sustainable, plant-based plastic.

Biocomposites are gaining acceptance in everything from automotive manufacturing to bridge building because they can be made stronger and cheaper than with traditional plastic and glass fiber. These "green" composite materials turn fibers from plants such as cotton, jute, kenaf, flax or hemp and plastics from soybean, wastepaper, corn and sugar into lightweight, strong and stiff materials through innovative research.

Bio-composite materials, Drzal said, have several advantages. Since they are renewable-based, bio-composites would reduce dependency on petroleum. The cost for composite materials can be reduced with large-scale usage. Potential harmful effects related to materials processing and disposal could be eliminated due to their potential biodegradability. MSU researchers at the center are successfully developing and designing bio-plastics as well as new methods for making them economically.

Natural fibers have significant advantages over glass fibers as reinforcements in composite materials, Drzal said. Natural plant fibers, extracted, cleaned and product-ready, cost roughly 25 cents per pound versus 75 cents per pound for glass fiber. Natural fibers have several advantages over traditional glass fibers, including low cost, low density, acceptable specific strength and stiffness, enhanced energy recovery, carbon dioxide sequestration and biodegradability.

The environmental impact is significant beyond the landfill. The high-fiber plants commonly used for composites are easily grown, require few pesticides and can be rotated with traditional food crops. Glass fibers require significant energy outlays for production.

At the ACS conference, the MSU research team presents technological advancements to best turn crops into desktops. Replacing established manufacturing processes will take time. Drzal said the trick will be creating processes that closely duplicate current manufacturing practices - such as producing a thin sheet of bio-composite that could be stamped like sheet metal.

Among MSU Composite Materials and Structures Center papers and posters to be presented at the ACS conference:

Environmentally benign powder impregnation processing and role of novel water-based coupling agents in natural fiber-reinforced thermoplastic composites - Paper, 11:20 a.m. Monday, Aug. 27, McCormick Place South, Room S101B, Level 1. This paper offers a look at a new method of processing natural fibers to create biocomposites identified as bio-composite stampable sheet processing - sort of a fiber-based sheet metal that can be used to fabricate future generations of composites for automotive, building and consumer goods applications.

Environmentally friendly "green" biodegradable composites from natural fiber and cellulosic plastic - Poster, 6 p.m. Tuesday, Aug. 28, Hyatt Regency Chicago Riverside Center. Cellulosic plastics are considered as the bio-polymers of the future. Creating bio-plastic from waste materials such as recycled paper or sugarcane is one way to make products environmentally friendly. Right now, cellulosic plastics are expensive, but at MSU scientists are experimenting with ways to use various inexpensive bio-fibers as reinforcements with cellulosic plastic to develop sustainable bio-composites for flexibility and strength.

Eco-friendly composite materials from biodegradable polymers: bio-composites to nanocomposites -Paper, 2:30 p.m. Thursday, Aug. 30, McCormick Place South Room S103A. Sustainability, industrial ecology and green chemistry are the new principles that are guiding the development of the next generation of products and processes. By embedding natural fibers such as kenaf, hemp, jute, sisal, flax, henequen, pineapple leaf fiber and coconut fibers into renewable resource-based bio-polymers such as soy-plastic, cellulosic plastic, starch plastic and corn-based plastic, new bio-composites are continuously being developed at MSU. The bio-plastics are developed through reactive extrusion processing. Through nanoclay reinforcement of bio-plastic, researchers are developing green nanocomposites.

Michigan State University

Related Plastics Articles from Brightsurf:

Bioplastics no safer than other plastics
Bioplastics contain substances that are as toxic as those in ordinary plastics.

A first-of-its-kind catalyst mimics natural processes to break down plastics
A team of scientists led by the U.S. Department of Energy's Ames Laboratory has developed a first-of-its-kind catalyst that is able to process polyolefin plastics, types of polymers widely used in things like plastic grocery bags, milk jugs, shampoo bottles, toys, and food containers.

Plastics, waste and recycling: It's not just a packaging problem
Discussions of the growing plastic waste problem often focus on reducing the volume of single-use plastic packaging items such as bags, bottles, tubs and films.

'Critical' questions over disease risks from ocean plastics
Key knowledge gaps exist in our understanding of how ocean microplastics transport bacteria and viruses -- and whether this affects the health of humans and animals, researchers say.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

Chemists make tough plastics recyclable
MIT chemists have developed a way to modify thermoset plastics with a chemical linker that makes it much easier to recycle them, but still allows them to retain their mechanical strength.

The many lifetimes of plastics
Many of us have seen informational posters at parks or aquariums specifying how long plastics bags, bottles, and other products last in the environment.

Recycling plastics together, simple and fast
Scientists successfully blended different types of plastics to be recycled together, providing a solution to the environmental problem of plastic waste and adding economic value to plastic materials.

Water replaces toxins: Green production of plastics
A new way to synthesize polymers, called hydrothermal synthesis, can be used to produce important high-performance materials in a way which is much better for the environment.

Untwisting plastics for charging internet-of-things devices
Scientists are unraveling the properties of electricity-conducting plastics so they can be used in future energy-harvesting devices.

Read More: Plastics News and Plastics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to