Light oscillations become visible

August 27, 2004

The human eye can detect changes in the intensity of light, not however the wavelength because light oscillates too fast (approximately 1000 trillion times per second). An international collaboration led by Ferenc Krausz and made up of researchers from the Vienna University of Technology, the Max-Planck-Institute for Quantum Optics and the University of Bielefeld have recently succeeded in developing a technique which can measure the instantaneous electric field of red light (quarter period ~ 620 attoseconds) and record its variation with a resolution of 100 attoseconds (Science, August 27, 2004). The experiment of the Austrian-German team allowed the first direct visualization of the electric field of visible light and constitutes the fastest measurement to date.

It has been known since the famous experiments of Heinrich Hertz near the end of the 19th century that light is a wave consisting of electric and magnetic fields, just as radio waves and microwaves. The only difference is in the number of times these fields change their direction in a second. In radio and microwaves this happens typically millions to trillions times per second. The field variation in these waves can be readily detected by turning it into electric current and displaying the variation of this current in electronic instruments called oscilloscopes.

In striking contrast, the electromagnetic field of visible light changes direction approx. one thousand trillion, i.e. 1 000 000 000 000 000, times per second, so that the instantaneous intensity of the light field varies from zero to maximum faster than a femtosecond (1 femtosecond being one thousandth of a trillionth of a second), some ten thousand times more rapidly than the resolution of the fastest electronic instruments available to date. Recording the field variation of visible light calls for an oscilloscope that exhibits a temporal resolution of several hundred attoseconds (1 attosecond being a thousandth of a femtosecond). The researchers recently succeeded in developing a technique which can measure the instantaneous electric field of red light (quarter period ~ 620 attoseconds) and record its variation with a resolution of 100 attoseconds.

The key to this measurement was the generation of single 250-attosecond extreme ultraviolet pulses, a feat achieved by the same collaboration a few months ago (Nature, February 26, 2004). The attosecond extreme ultraviolet pulse knocks electrons free from atoms to probe the electric field of a wave consisting of only a few cycles of red laser light. The electric field of red light accelerated or decelerated the electrons set free with respect to the light wave with a 100-attosecond timing precision. The change in the electronsâ€TM energy (shown in units of electron volts, eV, in Fig. 1), measured as a function of delay (shown in units of femtoseconds, fs, in Fig. 1) between the attosecond pulse and the laser light wave clearly exhibits the build-up and disappearance of the laser pulse within a few femtoseconds as well as oscillations with a period of the 2.5-fs wave cycle of 750-nm (red) light. The measured energy change directly yields the variation of the instantaneous strength and direction of the electric field of the few-cycle light wave (Fig. 2).

The red line in Fig. 2 depicts the electric field of a few-femtosecond flash of red light, as recorded by an apparatus that can be regarded as the first attosecond oscilloscope. The new technique permits direct and accurate measurement of ultrabroad-band light pulses (made up of many different colours), and thereby opens the door to the reproducible synthesis of ultrashort flashes of light with arbitrary waveform for a number of applications including the development of molecular electronics and X-ray lasers.
Related links:
[1] Max Planck Society press release "The Fastest Stopwatch in the World" from February 25th, 2004.

Original work:
E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Direct Measurement of Light Waves

Science, 27 August 2004.


Related Electric Field Articles from Brightsurf:

Charging electric cars up to 90% in 6 minutes
POSTECH Professor Byoungwoo Kang's research team uncovers a new Li-ion battery electrode material that can achieve high-energy density and high power capability per volume without reducing particle size.

uOttawa researchers find cheaper, faster way to measure the electric field of light
Researchers at the University of Ottawa have created a new method to measure the temporal evolution of electric fields with optical frequencies.

How dangerous are burning electric cars?
What happens if an electric car burns in a road tunnel or an underground car park?

One more hit from rare Earth: Efficient coherent spin manipulation by the electric field
Researchers used rare earth ions to efficiently couple the electric and magnetic behaviors of material.

Battery breakthrough gives boost to electric flight and long-range electric cars
Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with Carnegie Mellon University, have developed a new battery material that could enable long-range electric vehicles that can drive for hundreds of miles on a single charge, and electric planes called eVTOLs for fast, environmentally friendly commutes.

Deterministic reversal of single magnetic vortex circulation by an electric field
Chinese researchers discover a deterministic reversal of magnetic vortex circulation in a Ni79Fe21 (NiFe) island on top of a layered-perovskite Bi2WO6 (BWO) thin film using an electric field.

4D electric circuit network with topology
Researchers from China and Germany have proposed a design scheme to implement a four-dimensional topological insulating state in circuit network, which provides a convenient physical platform for studying high-dimensional states.

How we might recharge an electric car as it drives
Stanford engineers demonstrate a technology that could one day be scaled up to power a car moving down the road.

Electric cars better for climate in 95% of the world
Fears that electric cars could actually increase carbon emissions are unfounded in almost all parts of the world, news research shows.

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment
Nanoscale texturing, drilling, cutting and spatial sculpturing require not only high accuracy, but also the capability of manufacturing in the atmospheric environment.

Read More: Electric Field News and Electric Field Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to