Banishing biofilms: loosening their grip could make food supply safer

August 27, 2007

If you could see a piece of celery that's been magnified 10,000 times, you'd know what the scientists fighting foodborne pathogens are up against, said University of Illinois microbiologist Hans Blaschek.

"It's like looking at a moonscape, full of craters and crevices. And many of the pathogens that cause foodborne illness, such as Shigella, E. coli, and Listeria, make sticky, sugary biofilms that get down in these crevices, stick like glue, and hang on like crazy.

"Scientists and people in the food industry are intensely interested in how these biofilms form and behave. Understanding how they work could lead to targeted approaches for their prevention and removal," he said.

The sales figures for his new book Biofilms in the Food Environment certainly support that sense of urgency. Blaschek says the book contains the accumulated wisdom of academics who study biofilms and industry food scientists who battle them on the front lines daily.

According to Blaschek, the problem faced by produce suppliers can be a triple whammy. "If you're unlucky enough to be dealing with a pathogen--and the pathogen has the additional attribute of being able to form biofilms--and you're dealing with a food product that's minimally processed, well, you're triply unlucky," the scientist said.

"You may be able to scrub the organism off the surface, but the cells in these biofilms are very good at aligning themselves in the subsurface areas of produce.

"Over time, the sticky cells of the biofilm form on top of each other, creating a microenvironment that behaves more like a multicelled organism. And all these little bacterial cells communicate with each other. They're fascinating really; unfortunately, they can also be deadly," he said.

Blaschek says the biofilms book has generated a lot of interest from the food industry. "It's really a comprehensive reference source for industry scientists, university researchers, and regulatory agencies. In particular, food engineers who design strategies and cleaning procedures for produce need to understand how biofilms form and behave so they can develop better protocols for removing them," he said.

"There's an interesting discussion of the correlation between a strain's virulence and its biofilm-forming abilities, information about cutting-edge technologies to investigate microbial compositions in biofilm ecosystems and cell-to-cell interaction, and updated findings on the molecular attributes and mechanisms involved in biofilm development," he said.

"It's a very applied kind of approach, connecting the research that's being done in labs across the country with the needs of food technologists," he added.
-end-
Co-edited by Blaschek, The Ohio State University's Hua H. Wang, and food industry scientist Meredith Agle, Biofilms in the Food Environment is available from Blackwell Publishing.

A U of I study on removal of Shigella biofilms by M. E. Agle, S. E. Martin, and H. P. Blaschek was published in volume 68, no. 5, of the Journal of Food Protection. Chapters by former U of I doctoral student Agle in Biofilms in the Food Environment are "Biofilms in the Food Industry" and "Shigella: Survival on Produce and Biofilm Formation." Agle's U of I research was funded by a fellowship from the USDA National Needs program.

University of Illinois at Urbana-Champaign

Related Pathogens Articles from Brightsurf:

Pathogens in the mouth induce oral cancer
Pathogens found in tissues that surround the teeth contribute to a highly aggressive type of oral cancer, according to a study published 1st October in the open-access journal PLOS Pathogens by Yvonne Kapila of the University of California, San Francisco, and colleagues.

A titanate nanowire mask that can eliminate pathogens
Researchers in Lásló Forró's lab at EPFL, Switzerland, are working on a membrane made of titanium oxide nanowires, similar in appearance to filter paper but with antibacterial and antiviral properties.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

The Parkinson's disease gut has an overabundance of opportunistic pathogens
In 2003, Heiko Braak proposed that Parkinson's disease is caused by a pathogen in the gut that could pass through the intestinal mucosal barrier and spread to the brain through the nervous system.

Crop pathogens 'remarkably adaptable'
Pathogens that attack agricultural crops show remarkable adaptability to new climates and new plant hosts, new research shows.

Inexpensive, portable detector identifies pathogens in minutes
Most viral test kits rely on labor- and time-intensive laboratory preparation and analysis techniques; for example, tests for the novel coronavirus can take days to detect the virus from nasal swabs.

Outsmarting pathogens
A new influenza strain appears each flu season, rendering past vaccines ineffective.

Autonomous microtrap for pathogens
Antibiotics are more efficient when they can act on their target directly at the site of infestation, without dilution.

Acidic environment could boost power of harmful pathogens
New findings published in PLOS Pathogens suggest lower pH in the digestive tract may make some bacterial pathogens even more dangerous.

Protozoans and pathogens make for an infectious mix
The new observation that strains of V. cholerae can be expelled into the environment after being ingested by protozoa, and that these bacteria are then primed for colonisation and infection in humans, could help explain why cholera is so persistent in aquatic environments.

Read More: Pathogens News and Pathogens Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.