Slowly slip-sliding faults don't cause earthquakes

August 27, 2009

Some slow-moving faults may help protect some regions of Italy and other parts of the world against destructive earthquakes, suggests new research from The University of Arizona in Tucson.

Until now, geologists thought when the crack between two pieces of the Earth's crust was at a very gentle slope, there was no movement along that particular fault line.

"This study is the first to show that low-angle normal faults are definitely active," said Sigrún Hreinsdóttir, UA geosciences research associate.

Richard A. Bennett, a UA assistant professor of geosciences, wrote in an e-mail. "We can show that the Alto Tiberina fault beneath Perugia is steadily slipping as we speak--fortunately, for Perugia, without producing large earthquakes."

Perugia is the capital city of Italy's Umbria region.

Creeping slowly is unusual, Bennett said. Most faults stick, causing strain to build up, and then become unstuck with a big jerk. Big jerks are big earthquakes.

For decades, researchers have known about the Alto Tiberina and similar faults and debated whether such features in the Earth's crust were faults at all, because they didn't seem to produce earthquakes.

Hreinsdóttir and Bennett have now shown that the gently sloping fault beneath Perugia is moving steadily at the rate of approximately one-tenth of an inch (2.4 mm) a year.

Perugia has not experienced a damaging earthquake in about 2,000 years, Hreinsdóttir said. Because the fault is actively slipping, it might not be collecting strain, she said. "To have an earthquake, you have to have strain."

Other towns in the region that lie near steeply sloping faults, including L'Aquila and Assisi, have experienced large earthquakes within the last 20 years.

The team published their paper, "Active aseismic creep on the Alto Tiberina low-angle normal fault, Italy," in the August issue of Geology. The National Science Foundation funded the research.

In the same issue of Geology, Geoffrey A. Abers terms the UA team's work "a fascinating new discovery." Abers, of Lamont-Doherty Earth Observatory of Columbia University in Palisades, N.Y., was not involved in the research.

The UA team became interested in the Alto Tiberina fault because previous research suggested the fault might be moving.

To check on the fault, the UA team measured rock movements in and around Perugia using a technique called geodesy.

Geodesy works much like the GPS system in a car. Geoscientists put GPS units on rocks, Bennett said. Just as the car's GPS uses global positioning satellites to tell where the car is relative to a desired destination, the geodesy network can tell where one antenna and its rock are relative to another antenna.

Taking repeated measurements over time shows whether the rocks moved relative to one another.

In some cases, the GPS sites are too far apart to attribute very small movements of the Earth to an individual fault such as the Alto Tiberina, Hreinsdóttir said. However, the University of Perugia established a dense network of GPS stations in the region in 2005.

The UA team analyzed data from 19 GPS stations within approximately a 30-mile (50 km) radius around Perugia. Having such closely spaced stations and several years of data were key for detecting the fault's tiny motions, she said.

"This study is one more piece in the puzzle to understand seismic hazards in the region and can apply to other regions of the world that have low-angle normal faults," Hreinsdóttir said.

Bennett said there are numerous examples of such faults that are thought to be inactive, including the western U.S., Italy, Greece and Tibet.

He and UA geosciences doctoral candidate Austin Holland are now investigating similar faults in Arizona. One such fault, the Catalina Detachment, was involved in the formation of the Santa Catalina and Rincon Mountains that surround Tucson to the north and the east.

"No large earthquakes are known to have occurred on the Catalina detachment in historic times, so we don't really know if that fault is active or not," Bennett said. "Based on the results from the Alto Tiberina, it's possible the Catalina Detachment fault just slides very slowly and doesn't produce earthquakes."

The motion would be so slow as to be undetectable until the most recent technological advances in geodesy, he said. "The technology has evolved so far that we are now confident we can see little motions."

To better assess the earthquake risk in the Tucson region, his team is using geodesy throughout southern Arizona to recheck the markers that the National Geodetic Survey measured in the late 1990s.

"Now we can go out and repeat measurements to see how the positions have changed in ten years," he said.

Bennett will soon be able to say how fast the Tucson area's mountains are moving -- his team took measurements earlier this year and is analyzing the data now.
-end-
Researcher Contact
Richard A. Bennett
520-621-2324
rab@geo.arizona.edu

Sigrún Hreinsdóttir
520-626-2849
sigrunhr@email.arizona.edu

Related Web sites:
Rick Bennett
http://geodesy.geo.arizona.edu/

Sigrún Hreinsdóttir
http://geo.arizona.edu/~sigrun/

UA Dept. of Geosciences
http://geo.arizona.edu/

University of Arizona

Related Gps Articles from Brightsurf:

Using light to reprogramme the brain's GPS
Neuroscientists at UCL have used laser beams to ''switch on'' neurons in mice, providing new insight into the hidden workings of memory and showing how memories underpin the brain's inner GPS system.

GPS isn't just for road trips anymore
Precision agriculture technologies can improve efficiency on smaller farms

Small, precise and affordable gyroscope for navigating without GPS
A small, inexpensive and highly accurate gyroscope, developed at the University of Michigan, could help drones and autonomous cars stay on track without a GPS signal.

Australian GPs widely offering placebos, new study finds
Most Australian GPs have used a placebo in practice at least once, with active placebos (active treatments used primarily to generate positive expectations) more commonly used than inert placebos, according to a new study from University of Sydney.

Practice characteristics and job satisfaction among GPs in 11 countries
Organizational and functional features of general practitioner practices in 11 countries were studied in search of underlying reasons for job dissatisfaction.

GPs need training to tackle chronic opioid use
GPs must be better-equipped to support patients to manage the psychological challenge of reducing their opioid use -- according to new research from the University of East Anglia.

The GPS of neurons now better understood with a study published in Neuron
Researchers demonstrated the role that plays the Boc receptor in the the formation of the nervous system.

New continuity of care tracking method for GPs
New research has outlined a simple way to measure continuity of care for GPs, to benefit patients.

Over 40 percent of GPs intend to quit within five years: New survey
A new survey of GPs has revealed that over 40 percent intend to leave general practice within the next five years, an increase of nearly a third since 2014.

A GPS for inside your body
An MIT team has developed a system that can pinpoint the location of ingestible implants inside the body using low-power wireless signals.

Read More: Gps News and Gps Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.