Supervolcanic ash can turn to lava miles from eruption, MU scientists find

August 27, 2013

COLUMBIA, Mo. -- Supervolcanoes, such as the one sitting dormant under Yellowstone National Park, are capable of producing eruptions thousands of times more powerful than normal volcanic eruptions. While they only happen every several thousand years, these eruptions have the potential to kill millions of people and animals due to the massive amount of heat and ash they release into the atmosphere. Now, researchers at the University of Missouri have shown that the ash produced by supervolcanoes can be so hot that it has the ability to turn back into lava once it hits the ground tens of miles away from the original eruption.

Following a volcanic eruption, lava typically flows directly from the site of the eruption until it cools enough that it hardens in place. However, researchers found evidence of an ancient lava flow tens of miles away from a supervolcano eruption near Yellowstone that occurred around 8 million years ago. Previously, Graham Andrews, an assistant professor at California State University Bakersfield, found that this lava flow was made of ash ejected during the eruption. Following Andrew's discovery, Alan Whittington, an associate professor in the University of Missouri department of geological sciences in the College of Arts and Science, along with lead author Genevieve Robert and Jiyang Ye, both doctoral students in the geological sciences department, determined how this was possible.

"During a supervolcano eruption, pyroclastic flows, which are giant clouds of very hot ash and rock, travel away from the volcano at typically a hundred miles an hour," Robert said. "We determined the ash must have been exceptionally hot so that it could actually turn into lava and flow before it eventually cooled."

Because the ash should have cooled too much in the air to turn into lava right as it landed, the researchers believe the phenomenon was made possible by a process known as "viscous heating." Viscosity is the degree to which a liquid resists flow. The higher the viscosity, the less the substance can flow. For example, water has a very low viscosity, so it flows very easily, while molasses has a higher viscosity and flows much slower. Whittington likens the process of viscous heating to stirring a pot of molasses.

"It is very hard to stir a pot of molasses and you have to use a lot of energy and strength to move your spoon around the pot," Whittington said. "However, once you get the pot stirring, the energy you are using to move the spoon is transferred into the molasses, which actually heats up a little bit. This is viscous heating. So when you think about how fast the hot ash is traveling after a massive supervolcano eruption, once it hits the ground that energy is turned into heat, much like the energy from the spoon heating up the molasses. This extra heat created by viscous heating is enough to cause the ash to weld together and actually begin flowing as lava."

The volcanic ash from this eruption has to be at least 1,500 degrees Fahrenheit to turn into lava; however, since the ash should have lost some of that heat in the air, the researchers believe viscous heating accounted for 200 to 400 degrees Fahrenheit of additional heating to turn the ash into lava.
-end-
Robert, Andrews, Ye, and Whittington's paper was published in Geology. The National Science Foundation funded this research through a CAREER award to Whittington.

University of Missouri-Columbia

Related Volcanic Ash Articles from Brightsurf:

Volcanic ash could help reduce CO2 associated with climate change
University of Southampton scientists investigating ways of removing carbon dioxide (CO2) and other greenhouse gases from our atmosphere believe volcanic ash could play an important role.

Volcanic ash may have a bigger impact on the climate than we thought
Volcanic ash shuts down air traffic and can sicken people.

Ash dieback is less severe in isolated ash trees
New research published in the British Ecological Society's Journal of Ecology finds that ash dieback is far less severe in the isolated conditions ash is often found in, such as forests with low ash density or in open canopies like hedges, suggesting the long term impact of the disease on Europe's ash trees will be more limited than previously thought.

Lead isotopes a new tool for tracking coal ash
Duke University scientists have developed a forensic tracer that uses lead isotopes to detect and measure coal fly ash in dust, soil and sediments.

Volcanic ash sparks a new discovery
Imagine you're getting ready to fly to your favorite vacation destination when suddenly a volcano erupts, sending massive amounts of volcanic ash into the atmosphere, and forcing the cancellation of your flight.

Ash tree species likely will survive emerald ash borer beetles, but just barely
'Lingering ash.' That's what the US Forest Service calls the relatively few green and white ash trees that survive the emerald ash borer onslaught.

Ash dieback is predicted to cost £15 billion in Britain
A team of researchers from the University of Oxford, Fera Science, Sylva Foundation and the Woodland Trust has calculated the true economic cost of ash dieback -- and the predictions, published today in Current Biology, are staggering.

Mysterious volcanic ash layer from 29,000 years ago traced to volcano in Naples
Mysterious volcanic ash layer blanketing the Mediterranean 29,000 years ago traced to volcano in Naples, Italy.

How bacteria can help prevent coal ash spills
Researchers have developed a technique that uses bacteria to produce 'biocement' in coal ash ponds, making the coal ash easier to store and limiting the risk of coal ash spills into surface waters.

Wildfire ash could trap mercury
In the summers of 2017 and 2018, heat waves and drought conditions spawned hundreds of wildfires in the western US and in November, two more devastating wildfires broke out in California, scorching thousands of acres of forest, destroying homes and even claiming lives.

Read More: Volcanic Ash News and Volcanic Ash Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.