Australian, UK scientists solve 30-year wheat rust genetics puzzle

August 27, 2018

Researchers from the University of Sydney, CSIRO, the United Kingdom's John Innes Centre, Limagrain UK and the National Institute of Agricultural Botany (NIAB) have isolated the first major resistance genes against the detrimental stripe rust disease that is devastating wheat crops worldwide.

The discovery by the scientists, who have cloned three related rust resistance genes - called Yr7, Yr5, and YrSP - will enable these important genes to be accurately monitored and integrated into breeding programs in the fight against ever-changing pathogens that could kill about 70 percent or more of whole wheat crops at a time.

Wheat is relied on by more than one-third of the world's population and one of the most economically important stable foods. Wheat rust is one of the most widespread and devastating diseases and stripe rust - which is bright yellow and shaped as stripes - is the most problematic of these pathogens worldwide because it easily adapts to different climates and environments, and there are not many effective genes that breeders can use in their varieties.

The characterisation of these three genes was made possible in a short period of time because of improving technology and the collaboration led out of Australia and the UK.

The University of Sydney's cereal rust research team under the directorship of Prof Robert Park - a world-leader in wheat rust research - created mutation populations in 2015 and identified mutants for each gene, while unknowingly in parallel, scientists in the UK were working on two of the genes. They found out about each other's work at an international conference (the 13th International Wheat Genetics Symposium) in April 2017 and started collaborating.

The findings are published today in Nature Plants.

Co-author from the University of Sydney Dr Peng Zhang said this research was a major contribution to our understanding of the immune receptor protein class of resistance genes in wheat; despite very similar gene structure, each gene confers a distinct and unique recognition specificity to the stripe rust pathogen.

"This work finally resolved the relationships between these three genes and had provided an answer to a question that is more than 30-year-old," she said.

"Our work represents the first authenticated molecular isolation of major resistance genes against stripe rust."

The two lead authors are PhD students: Ms Jianping Zhang (co-supervised by Prof Robert Park and Dr Peng Zhang from Sydney's School of Life and Environmental Sciences and Dr Evans Lagudah from CSIRO) and Ms Clemence Marchal from John Innes Centre, UK.

PhD candidate Ms Zhang said that until recently, it would take many years to clone a resistance gene from wheat.

"With the advances in mutational genomics, sequencing and cloning technologies, we were able to clone all three genes within a relatively short period of time," said Ms Zhang, who is a member of the Sydney Institute of Agriculture and the Plant Breeding Institute at Cobbitty and conducting her research at both the University of Sydney and CSIRO.

"Now we have a thorough understanding of the gene structure and the relationships between these three important genes."

Dr Zhang said the breakthrough could also make possible the editing of genes rendered ineffective to the rust pathogen, in order to try to switch on their effectiveness again, as a way of protecting against rust pathogens while minimising the use of fungicide. All this work is only possible after we isolate more genes and have a better understanding on their architectures and functions.

"Diagnostic markers have been developed so that these genes can be utilised promptly in wheat breeding programs around the world," she concluded.

"In addition, the cloning and functional analysis of these genes could lead to novel control strategies in the future."
-end-
NOTES TO EDITORS:

The presence of 'integrated domains' within plant immune receptors was only recently identified as a hallmark of how flowering plants evolve new disease resistance recognitions against pathogens. This has quickly become a hot topic in plant biology.

The new research has found a unique double BED domain NLR structure in these genes (the BED domain is a protein domain that was named after the Drosophila proteins BEAF and DREF, while NLR is nucleotide binding site leucine-rich repeat - the most represented class of resistance genes in plants). This structure is novel for fungal resistance genes and is a major discovery in plant resistance genetics. The structure has not been found in genes in other plants, except a rice gene against a bacterial pathogen.

The researchers hypothesise that different pathogen recognition specificities could be engineered through genome editing of these gene architectures.

The University of Sydney has the longest running research program on cereal rusts in the world. Part of this particular research was initiated in the early 1990s by Prof Robert McIntosh at the University of Sydney Plant Breeding Institute. Since then, the University of Sydney has done extensive genetic analyses on the materials in order to dissect the relationship of these three genes.

University of Sydney

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.