Rejuvenating old organs could increase donor pool

August 27, 2020

Boston, MA -- Despite the limited supply of organs available for patients on waitlists for transplantation, organs from older, deceased donors are frequently discarded or not utilized. Available older organs have the potential to close the gap between demand and supply that is responsible for the very long wait-times that lead to many patients not surviving the time it takes for an organ to become available. Older organs can also often provoke a stronger immune response and may put patients at greater risk of adverse outcomes and transplant rejection. But, as the world population ages, organs from older, deceased donors represent an untapped and growing resource for patients in need. Investigators from Brigham and Women's Hospital are leading efforts to breathe new life into older organs by leveraging a new class of drugs known as senolytics, which target and eliminate old cells. Using clinical and experimental studies, the team presents evidence that senolytic drugs may help rejuvenate older organs, which could lead to better outcomes and a wider pool of organs eligible for donation. Results are published in Nature Communications.

"Older organs are available and have the potential to contribute to mitigating the current demand for organ transplantation," said corresponding author Stefan G. Tullius, MD, PhD, chief of the Division of Transplant Surgery at the Brigham. "If we can utilize older organs in a safe way with outcomes that are comparable, we will take a substantial step forward for helping patients."

As organs age, senescent cells accumulate. These cells, which no longer divide, escape the body's usual means of destroying older, unneeded cells. Senescent cells release cell-free mitochondrial DNA (mt-DNA), which also accumulates in older organs. Recent studies have suggested that this rise in mt-DNA is tied to organ rejection.

In their Nature Communications paper, Tullius and colleagues identified senescent cells as the key source of mt-DNA and present evidence that the accumulation of mt-DNA provokes an immune response leading to organ failure and rejection. Senolytic drugs force senescent cells back into the cell cycle, allowing the body to clear them. The researchers therefore examined whether senolytic drugs could be used to improve outcomes. In a mouse model, they treated organ donors with a combination of the senolytic drugs dasatinib and quercetin. The drugs reduced the number of senescent cells, reduced mt-DNA levels and decreased inflammation. Most relevantly, the survival of old organs treated with senolytics was as comparable to that of organs originating from young donors.

Since the authors carried out their therapeutic experiments in a mouse model, further mechanistic studies are needed to evaluate whether senolytic drugs may have the same effects on human organs from older donors and the same degree of success in clearing senescent cells, as well as whether organs can be treated effectively with senolytic drugs after they are harvested. The authors have already started with first steps in humans and determined that augmented levels of mt-DNA circulate in older organ donors.

"We have not yet tested the effects clinically, but we are well prepared to take the next step toward clinical application by using a perfusion device to flow senolytic drugs over organs and measure whether or not there are improvements in levels of senescent cells," said Tullius. "Our data provide a rationale for considering clinical trials treating donors, organs, and/or recipients with senolytic drugs to optimize the use of organs from older donors. The goal is to help to close the gap between organ availability and the needs of the many patients currently on transplant waiting lists."
This study was supported by grants from the National Institutes of Health (R56/R01AG039449 and R37 AG013925). Investigators on the study were also supported by the Biomedical Education Program (BMEP) of the German Academic Exchange Service, the German Research Foundation, the Osaka Medical Foundation, the Chinese Scholarship Council (201606370196) and Central South University, the Connor Group, Robert J. and Theresa W. Ryan, and the Noaber and Ted Nash Long Life Foundations. The trial in deceased organ donors was supported by a grant from the HRSA, Department of Health and Human Services (R38OT22183).

Paper cited: Iske, J et al. "Senolytics Prevent mt-DNA-Induced Inflammation and Promote the Survival of Aged Organs Following Transplantation" Nature Communications DOI: 10.1038/s41467-020-18039-x

Brigham and Women's Hospital

Related Drugs Articles from Brightsurf:

The danger of Z-drugs for dementia patients
Strong sleeping pills known as 'Z-drugs' are linked with an increased risk of falls, fractures and stroke among people with dementia, according to new research.

Wallflowers could lead to new drugs
Plant-derived chemicals called cardenolides - like digitoxin - have long been used to treat heart disease, and have shown potential as cancer therapies.

Bristol pioneers use of VR for designing new drugs
Researchers at the University of Bristol are pioneering the use of virtual reality (VR) as a tool to design the next generation of drug treatments.

Towards better anti-cancer drugs
The Bayreuth biochemist Dr. Claus-D. Kuhn and his research team have deciphered how the important human oncogene CDK8 is activated in cells of healthy individuals.

Separating drugs with MagLev
The composition of suspicious powders that may contain illicit drugs can be analyzed using a quick and simple method called magneto-Archimedes levitation (MagLev), according to a new study published in the journal Angewandte Chemie.

People are more likely to try drugs for the first time during the summer
American teenagers and adults are more likely to try illegal or recreational drugs for the first time in the summer, a new study shows.

Drugs used to enhance sexual experiences, especially in UK
Combining drugs with sex is common regardless of gender or sexual orientation, reveals new research by UCL and the Global Drug Survey into global trends of substance-linked sex.

Promising new drugs for old pathogen Mtb
UConn researchers are targeting a metabolic pathway, the dihydrofolate reductase pathway, crucial for amino acid synthesis to treat TB infections.

Can psychedelic drugs heal?
Many people think of psychedelics as relics from the hippie generation or something taken by ravers and music festival-goers, but they may one day be used to treat disorders ranging from social anxiety to depression, according to research presented at the annual convention of the American Psychological Association.

New uses for existing antiviral drugs
Broad-spectrum antiviral drugs work against a range of viral diseases, but developing them can be costly and time consuming.

Read More: Drugs News and Drugs Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to