AI as good as the average radiologist in identifying breast cancer

August 27, 2020

Researchers at Karolinska Institutet and Karolinska University Hospital in Sweden have compared the ability of three different artificial intelligence (AI) algorithms to identify breast cancer based on previously taken mammograms. The best algorithm proved to be as accurate as the average radiologist. The results, published in JAMA Oncology, may lead the way in reorganising breast cancer screening for the future.

"This is the first independent comparison conducted to assess the accuracy of several different AI algorithms," says study author Fredrik Strand, a researcher at the Department of Oncology-Pathology at Karolinska Institutet and a radiologist at Karolinska University Hospital. "We can demonstrate that one of the three algorithms is significantly better than the others and that it equals the accuracy of the average radiologist."

There are currently a large number of suppliers developing various AI-based medical imaging solutions. This study compares the ability of three of these to identify breast cancer in already taken mammograms.

The study included mammograms of 8,805 women between the ages of 40 and 74, all of whom had undergone breast cancer screening between 2008 and 2015. Of these, 739 had been diagnosed with breast cancer, either at the time of screening or within the following 12 months. The most successful of the three AI algorithms diagnosed the same percentage of women with cancer as the average radiologist.

The results also demonstrated that one of the AI algorithms was significantly better than the others.

"We conducted the study in order to find out how far the algorithms have developed and whether there is any difference between the available systems," Fredrik Strand explains. "The results show that, in principle, the best algorithm is ready for use and that there is a significant difference between the various algorithms on the market."

Another study of the same research group, recently published in The Lancet Digital Health, showed that an AI algorithm could sort mammography images to indicate which required additional attention by radiologists and which were easily assessed by AI alone without missing any cancer that would otherwise have been detected by a radiologist.

The researchers are now moving on to study how AI can play a part in improving breast cancer screening. Current practice involves two radiologists examining every mammogram. If either of these identify a suspected tumour, the examination proceeds to a discussion involving at least two radiologists who together decide whether the woman should be recalled for further examination.

"We are planning a prospective clinical study to see how AI works as an independent reviewer of mammograms in a day-to-day clinical environment, both by acting as a third reviewer and by helping to select women who can be offered complementary MRI scans in order to detect cancers at an earlier stage," says Fredrik Strand.
The research was conducted at Karolinska Institutet and financed by Region Stockholm. The suppliers of the three algorithms requested anonymity and had no influence over how the study was conducted or how the results were interpreted.

Publication: "External evaluation of three commercial artificial intelligence algorithms for independent assessment of screening mammograms," Mattie Salim, Erik Wa?hlin, Karin Dembrower, Edward Azavedo, Theodoros Foukakis, Yue Liu, Kevin Smith, Martin Eklund and Fredrik Strand, JAMA Oncology, Aug. 27, 2020, doi: 10.1001/jamaoncol.2020.3321

Karolinska Institutet

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to