Body scanners for lab animals

August 28, 2003

A PET (positron emission tomography) scanner sensitive enough to use on laboratory mice has been developed by biomedical engineers at UC Davis. The device is already being used for studies on prostate cancer.

"We think it's the highest resolution scanner in existence. We can see things we couldn't see before," said Simon Cherry, professor of biomedical engineering at UC Davis, who leads the research group.

PET scanners have become widely used in medical imaging, alongside X-rays, CAT scans and magnetic resonance imaging, because they can give information about metabolic activity in body tissues. The machines used for scanning people cannot see sufficiently fine detail for use on small animals such as mice and rats.

The current machine, called MicroPET II, can resolve a volume of about one cubic millimeter, or one microliter, Cherry said. That represents an approximately eight-fold improvement over an earlier device built by Cherry's laboratory at UCLA, before moving to UC Davis in 2001.

PET works by detecting short-lived radioactive tracers that emit positrons, or anti-electrons. Those tracers can be attached to other molecules that are targeted to particular cells. For example, highly active cells, such as cancer cells, can be tagged with radioactive glucose.

Non-invasive imaging technology such as PET allows researchers to gain more information and to use fewer animals in experimental studies. For example, researchers could use an experimental drug to treat cancer in mice and see if the tumors were shrinking. Without methods such as PET, small deposits of cancer cells are hard to detect in experimental animals.

Cherry presented the work at the annual meeting of the Society for Molecular Imaging in San Francisco, Aug. 15-18. The work has also been published in the journal Physics in Medicine and Biology.
-end-


University of California - Davis

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.