New tool aids stem cell engineering for medical research

August 28, 2014

ROCHESTER, Minn. -- A Mayo Clinic researcher and his collaborators have developed an online analytic tool that will speed up and enhance the process of re-engineering cells for biomedical investigation. CellNet is a free-use Internet platform that uses network biology methods to aid stem cell engineering. Details of CellNet and its application to stem cell engineering are described in two back-to-back papers in the journal Cell.

"This free platform has a broad range of uses for all types of cell-based investigations and can potentially offer help to people working on all types of cancer," says Hu Li, Ph.D., investigator in the Mayo Clinic Center for Individualized Medicine and Department of Molecular Pharmacology & Experimental Therapeutics, and co-lead investigator in the two works. "CellNet will indicate how closely an engineered cell resembles the real counterpart and even suggests ways to adjust the engineering."

The network biology platform contains data on a wide range of cells and details on what is known about those cell types. Researchers say the platform can be applied to almost any study and allows users to refine the engineering process. In the long term, it should provide a reliable short cut to the early phases of drug development, individualized cancer therapies, and pharmacogenetics.

CellNet uses 21 cell types and tissues and data from 56 published human and mouse engineering studies as a basis for analyzing and predicting cell fate and corresponding engineering strategies. The platform also offers classification scores to determine differentiation and conversion of induced pluripotent stem cells. It reveals incomplete conversion of engineered microphages and hepatocytes. CellNet can be used for interrogation of cell fate following expression profiling, by classifying input by cell type, quantifying gene regulatory network status, and identifying aberrant regulators affecting the engineering process. All this is valuable in predicting success of engraftment of cancer tumors in mouse avatars for cancer and drug development research. CellNet can be accessed at cellnet.hms.harvard.edu.
-end-
Co-lead authors with Dr. Li are Patrick Cahan, Ph.D., and Samantha Morris, Ph.D., of Boston Children's Hospital. The senior investigators are George Q. Daley, M.D., Ph.D., Director of the Stem Cell Transplantation Program at Boston Children's and senior investigator on both studies and James Collins, Ph.D., Core Faculty member at the Wyss Institute and the William F. Warren Distinguished Professor at Boston University, co-senior investigator on one of the studies.

Investigators are supported in part by the National Institutes of Health, specifically, the National Institute of Diabetes and Digestive and Kidney Diseases and the National Heart, Lung, and Blood Institute; the Children's Hospital Stem Cell Program; the Howard Hughes Medical Institute; Alex's Lemonade Stand Foundation; the Ellison Medical Foundation; the Doris Duke Medical Foundation; the Mayo Clinic Center for Individualized Medicine and the Mayo Clinic Center for Regenerative Medicine.

About Mayo Clinic

Mayo Clinic is a nonprofit organization committed to medical research and education, and providing expert, whole-person care to everyone who needs healing. For more information, visit http://www.mayoclinic.org/about-mayo-clinic or http://newsnetwork.mayoclinic.org/.

MEDIA CONTACT:
Robert Nellis, Mayo Clinic Public Affairs, 507-284-5005, newsbureau@mayo.edu

Mayo Clinic

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.