KAIST's mathematician reveals the mechanism for sustaining biological rhythms

August 28, 2015

Daejeon, Republic of Korea, August 28, 2015 -- Our bodies have a variety of biological clocks that follow rhythms or oscillations with periods ranging from seconds to days. For example, our hearts beat every second, and cells divide periodically. The circadian clock located in the hypothalamus generates twenty-four hour rhythms, timing our sleep and hormone release. How do these biological clocks or circuits generate and sustain the stable rhythms that are essential to life?

Jae Kyoung Kim, who is an assistant professor in the Department of Mathematical Sciences at KAIST, has predicted how these biological circuits generate rhythms and control their robustness, utilizing mathematical modeling based on differential equations and stochastic parameter sampling. Based on his prediction, using synthetic biology, a research team headed by Matthew Bennett of Rice University constructed a novel biological circuit that spans two genetically engineered strains of bacteria, one serves as an activator and the other as a repressor to regulate gene expression across multiple cell types, and found that the circuit generates surprisingly robust rhythms under various conditions.

The results of the research conducted in collaboration with KAIST (Korea Institute of Science and Technology), Rice University, and the University of Houston were published in Science (August 28, 2015 issue). The title of the paper is "Emergent Genetic Oscillations in a Synthetic Microbial Consortium".

The top-down research approach, which focuses on identifying the components of biological circuits, limits our understanding of the mechanisms in which the circuits generate rhythms. Synthetic biology, a rapidly growing field at the interface of biosciences and engineering, however, uses a bottom-up approach.

Synthetic biologists can create complex circuits out of simpler components, and some of these new genetic circuits are capable of fluctuation to regulate gene production. In the same way that electrical engineers understand how an electrical circuit works as they construct batteries, resistors, and wires, synthetic biologists can understand better about biological circuits if they put them together using genes and proteins. However, due to the complexity of biological systems, both experiments and mathematical modeling need to be applied hand in hand to design these biological circuits and understand their function.

In this research, an interdisciplinary approach proved that a synthetic intercellular singling circuit generates robust rhythms to create a cooperative microbial system. Specifically, Kim's mathematical analysis suggested, and experiments confirmed, that the presence of negative feedback loops in addition to a core transcriptional negative feedback loop can explain the robustness of rhythms in this system. This result provides important clues about the fundamental mechanism of robust rhythm generation in biological systems.

Furthermore, rather than constructing the entire circuit inside a single bacterial strain, the circuit was split among two strains of Escherichia coli bacterium. When the strains were grown together, the bacteria exchanged information, completing the circuit. Thus, this research also shows how, by regulating individual cells within the system, complex biological systems can be controlled, which in turn influences each other (e.g., the gut microbiome in humans).
Ye Chen, a graduate student in Bennett's laboratory at Rice University, and Jae Kyoung Kim, an assistant professor at KAIST and a former postdoctoral fellow at Ohio State University, are the lead authors of the paper. The co-authors are Rice graduate student Andrew Hirning and Krešimir Josic?, a professor of mathematics at the University of Houston. Bennett is the Assistant Professor of the Biochemistry and Cell Biology Department at Rice University.

About the researcher: While Jae Kyoung Kim is a mathematician, he has also solved various biological puzzles in collaboration with various experimental laboratories of Matthew Bennett at Rice University, David Virshup at Duke and the National University of Singapore, Carla Finkielstein at Virginia Polytechnic Institute and State University, Choo-Gon Lee at the Florida State University, Seung-Hee Yoo at the Medical School of the University of Texas, Toru Takumi at RIKEN Brain Science Institute, and Travis Wager at Pfizer Inc. He has used non-linear dynamics and stochastic analysis to understand the function of biochemical networks in biological systems. In particular, he is interested in mechanisms generating and regulating biological rhythms.

The Korea Advanced Institute of Science and Technology (KAIST)

Related Synthetic Biology Articles from Brightsurf:

Deep learning takes on synthetic biology
Machine learning is helping biologists solve hard problems, including designing effective synthetic biology tools.

Machine learning takes on synthetic biology: algorithms can bioengineer cells for you
Scientists at Lawrence Berkeley National Laboratory have developed a new tool that adapts machine learning algorithms to the needs of synthetic biology to guide development systematically.

Cell-free synthetic biology comes of age
In a review paper published in Nature Reviews Genetics, Professor Michael Jewett explores how cell-free gene expression stands to help the field of synthetic biology dramatically impact society, from the environment to medicine to education.

Scientists develop electrochemical platform for cell-free synthetic biology
Scientists at the University of Toronto (U of T) and Arizona State University (ASU) have developed the first direct gene circuit to electrode interface by combining cell-free synthetic biology with state-of-the-art nanostructured electrodes.

Gene-OFF switches tool up synthetic biology
Wyss researchers and their colloaborators have developed two types of programmable repressor elements that can switch off the production of an output protein in synthetic biology circuits by up to 300-fold in response to almost any triggering nucleotide sequence.

Tennessee researchers join call for responsible development of synthetic biology
Engineering biology is transforming technology and science. Researchers in the international Genome Project-write, including two authors from the UTIA Center for Agricultural Synthetic Biology, outline the technological advances needed to secure a safe, responsible future in the Oct.

Scientists chart course toward a new world of synthetic biology
A UC Berkeley team with NSF funding has compiled a roadmap for the future of synthetic or engineering biology, based on the input of 80 leaders in the field from more than 30 institutions.

DFG presents position paper on synthetic biology
Clear distinction between synthetic biology and underlying methods required / No new potential risks associated with current research work

Commandeering microbes pave way for synthetic biology in military environments
A team of scientists from the US Army Research Laboratory and the Massachusetts Institute of Technology have developed and demonstrated a pioneering synthetic biology tool to deliver DNA programming into a broad range of bacteria.

BioBits: Teaching synthetic biology to K-12 students
As biologists have probed deeper into the genetic underpinnings of life, K-12 schools have struggled to provide a curriculum that reflects those advances.

Read More: Synthetic Biology News and Synthetic Biology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.