Mapping out cancer's movements

August 28, 2018

WASHINGTON, D.C., August 28, 2018 -- Cancer researchers struggle to identify tumor cells that are interspersed within nonmalignant tissues because tumor cells exploit the tissue environment and monopolize available resources to continue growing. Researchers attribute cancer cell's ability to use cell signaling and metabolic pathways that override normal cell growth restrictions to complicated chemical exchanges between tissue and tumor cells. A new approach shows promise to begin analyzing cell-to-cell interactions in this complex environment.

Researchers at the University of Washington have demonstrated a new technique for mapping the flow of biomolecules in and around solid tumors. In a special issue of Biointerphases, an AVS journal from AIP Publishing, that is highlighting women in the field of biointerface science, the group uses time-of-flight secondary ion mass spectrometry (ToF-SIMS) to observe how molecules move and how tumors send signals to their microenvironment and sap local tissue of resources.

"People are going to see that this TOF-SIMS technique, when combined with knowledge of tumor cell behavior, will allow researchers to understand what's happening on the chemical molecular level," said Lara Gamble, an author on the paper. "Are there certain molecules, lipids or fuels that tumors suck away from regular tissues to help them grow?"

Tumor cells can draw in lipids from neighboring cells to help build bigger membranes and provide energy for bloated tumor cells. Blood vessels can become disrupted, leaving "blood lakes" inside tumors that some researchers believe feed the growing tumor.

Various methods have been developed for identifying where a tumor is and how it utilizes connective tissue like blood vessels to sustain its growth, but, until recently, little has been understood about what kinds of signals tumors use to achieve this. To address this question, Gamble and her colleagues use TOF-SIMS to blast nanoscale regions of a tumor so parts leave the sample and enter a mass spectrometer. This device then separates and counts molecules based on their molecular weight.

Scanning areas of 800 nanometers or less, the approach generates a map for where any particular molecule is present in a tumor sample. One square millimeter is reported to take about an hour and a half to map.

The group tested their technique on an inducible mouse model of pancreatic neuroendocrine tumorigenesis that is well-established as a model for studying the interaction between oncogenes and tumor suppressors, which together generate highly aggressive cancers.

When mapped, the mouse tumor microenvironments showed significant changes in metabolism. The ToF-SIMS technique was able to identify alterations to the normal flow of a wide variety of molecules ranging from larger lipids and nucleotides down to single ions.

Next, Gamble and her group plan to use their technique on earlier time-points of tumor induction in an attempt to chart out a series of chemical signals that tell the story of pancreatic tumor growth.

"We're also looking to see if the there's cross-talk between tumors," Gamble said. "We would like to identify the molecules that could both initiate and maintain tumor growth."
-end-
The article, "Analysis of the Myc-induced pancreatic β cell islet tumors microenvironment using imaging ToF-SIMS," is authored by Blake M. Bluestein, Fionnuala Morrish, Daniel J. Graham, Li Huang, David Hockenberry and Lara J. Gamble. The article will appear in Biointerphases August 28, 2018 (DOI: 10.1116/1.5038574). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1116/1.5038574.

ABOUT THE JOURNAL

The AVS journal Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays.

American Institute of Physics

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.