Nav: Home

Genes that regulate how much we dream

August 28, 2018

Sleep is known to allow animals to re-energize themselves and consolidate memories. Rapid eye movement (REM) sleep, a mysterious stage of sleep in which animals dream, is known to play an important role in maintaining a healthy mental and physical life, but the molecular mechanisms behind this state are barely understood. Now, an international research team led by researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan has identified a pair of genes that regulate how much REM and non-REM sleep an animal experiences.

Sleep is a universal and vital behavior in animals. In higher vertebrates such as mammals and birds, sleep is classified into two phases, rapid eye movement (REM) sleep and non-REM sleep. During REM sleep, our brain is as active as it is during wakefulness, and this stage is believed to function in memory consolidation. Although our knowledge of the neural mechanisms underlying sleep has gradually advanced, the essential molecular factors that regulate REM sleep are still unknown. Now, however, a research team led by Hiroki Ueda at RIKEN BDR and The University of Tokyo has identified two essential genes involved in the regulation of REM sleep. The amount of REM sleep was drastically decreased down to almost undetectable levels when both genes were knocked out in a mouse model. This study was published by Cell Reports on August 28.

Several past studies have suggested that acetylcholine--the first identified neurotransmitter--and its receptor are important for the regulation of REM sleep. Acetylcholine is abundantly released in some parts of mammalian brain during REM sleep and wakefulness. However, it was unclear which receptor or receptors were directly involved in the regulation of REM sleep due to the complexity of the underlying neural network.

For this study, the researchers used cutting-edge genetic tools to modify mouse genes and conduct genetic screening for factors whose inhibition would cause sleep abnormalities. After knocking out a number of genes encoding various acetylcholine receptors, they found that the loss of two receptors--called Chrm1 and Chrm3--induced a characteristic short-sleep profile. These two receptors are widely distributed in distinct brain regions. The knockout of Chrm1 reduced and fragmented REM sleep, whereas knocking out Chrm3 reduced the length of non-REM sleep. When both genes were knocked out, mice failed almost entirely to experience REM sleep, but survived nonetheless.

"The surprising finding that mice are viable despite the almost complete loss of REM sleep will allow us to rigorously verify whether REM sleep plays a crucial role in fundamental biological functions such as learning and memory" says Yasutaka Niwa, the co-first author of this article.

These findings strongly suggest that these two receptors are essential for sleep regulation, especially REM sleep, and function in different ways. "The discovery that Chrm1 and Chrm3 play a key role in REM sleep opens the way to studying its underlying cellular and molecular mechanisms and will eventually allow us to define the state of REM sleep, which has been paradoxical and mysterious since its original report," Ueda says.
-end-
Reference:

Niwa Y et al. (2018) Muscarinic acetylcholine receptors Chrm1 and Chrm3 are essential for REM sleep. Cell Reports. doi: 10.1016/j.celrep.2018.07.082.

RIKEN

Related Sleep Articles:

Wind turbine noise affects dream sleep and perceived sleep restoration
Wind turbine noise (WTN) influences people's perception of the restorative effects of sleep, and also has a small but significant effect on dream sleep, otherwise known as REM (rapid eye movement) sleep, a study at the University of Gothenburg, Sweden, shows.
To sleep deeply: The brainstem neurons that regulate non-REM sleep
University of Tsukuba researchers identified neurons that promote non-REM sleep in the brainstem in mice.
Chronic opioid therapy can disrupt sleep, increase risk of sleep disorders
Patients and medical providers should be aware that chronic opioid use can interfere with sleep by reducing sleep efficiency and increasing the risk of sleep-disordered breathing, according to a position statement from the American Academy of Sleep Medicine.
'Short sleep' gene prevents memory deficits associated with sleep deprivation
The UCSF scientists who identified the two known human genes that promote 'natural short sleep' -- nightly sleep that lasts just four to six hours but leaves people feeling well-rested -- have now discovered a third, and it's also the first gene that's ever been shown to prevent the memory deficits that normally accompany sleep deprivation.
Short sleep duration and sleep variability blunt weight loss
High sleep variability and short sleep duration are associated with difficulties in losing weight and body fat.
Nurses have an increased risk of sleep disorders and sleep deprivation
According to preliminary results of a new study, there is a high prevalence of insufficient sleep and symptoms of common sleep disorders among medical center nurses.
Common sleep myths compromise good sleep and health
People often say they can get by on five or fewer hours of sleep, that snoring is harmless, and that having a drink helps you to fall asleep.
Sleep tight! Researchers identify the beneficial role of sleep
Why do animals sleep? Why do humans 'waste' a third of their lives sleeping?
Does extra sleep on the weekends repay your sleep debt? No, researchers say
Insufficient sleep and untreated sleep disorders put people at increased risk for metabolic problems, including obesity and diabetes.
Kicking, yelling during sleep? Study finds risk factors for violent sleep disorder
Taking antidepressants for depression, having post-traumatic stress disorder or anxiety diagnosed by a doctor are risk factors for a disruptive and sometimes violent sleep disorder called rapid eye movement (REM) sleep behavior disorder, according to a study published in the Dec.
More Sleep News and Sleep Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.