New approach makes sprayed droplets hit and stick to their targets

August 28, 2018

CAMBRIDGE, Mass. -- When spraying paint or coatings onto a surface, or fertilizers or pesticides onto crops, the size of the droplets makes a big difference. Bigger drops will drift less in the wind, allowing them to strike their intended targets more accurately, but smaller droplets are more likely to stick when they land instead of bouncing off.

Now, a team of MIT researchers has found a way to balance those properties and get the best of both -- sprays that don't drift too far but provide tiny droplets to stick to the surface. The team accomplished this in a surprisingly simple way, by placing a fine mesh in between the spray and the intended target to break up droplets into ones that are only one-thousandth as big.

The findings are reported today in the journal Physical Review Fluids, in a paper by MIT associate professor of mechanical engineering Kripa Varanasi, former postdoc Dan Soto, graduate student Henri-Louis Girard, and three others at MIT and at CNRS in Paris.

Earlier work by Varanasi and his team had focused on ways to get the droplets to stick more effectively to the surfaces they strike rather than bouncing away. The new study focuses on the other end of the problem -- how to get the droplets to reach the surface in the first place. Varanasi explains that typically less that 5 percent of sprayed liquids actually stick to their intended targets; of the 95 percent or more that gets wasted, about half is lost to drift and never even gets there, and the other half bounces away.

Atomizers -- devices that can spray liquids in the form of droplets so small that they remain suspended in air rather than settling out -- are crucial parts of many industrial processes, including painting and coating, spraying fuel into engines or water into cooling towers, and printing with fine droplets of ink. The new advance developed by this team was to make the initial spray in the form of larger drops, which are much less affected by breezes and more likely to reach their targets, and then to create the much finer droplets just before they reach the surface, by placing a mesh screen in between.

Though the process could apply to many different spraying applications, "the big motivation is agriculture," Varanasi says. The runoff of pesticides that miss their target and fall on the ground can be a significant cause of pollution and a waste of the expensive chemicals. What's more, the impact of finer droplets is less likely to damage or weaken certain plants.

Farmers already cover some kinds of crops with fabric meshes, to protect against birds and insects devouring the plants, so the process is already familiar and widely used. Many kinds of mesh materials would work, the researchers say -- what matters is the size of the openings in the mesh and the material's thickness, parameters the team has precisely quantified through a series of lab experiments and mathematical analysis. For their experiments, the researchers primarily used a commonly available and inexpensive fine stainless steel mesh.

The researchers propose that, after deploying the mesh over the crop, either directly supported by the plant stalks or supported on a framework, a farmer could simply use a conventional sprayer that produces larger drops, which would stay on course even in breezy conditions. Then, as the drops reach the plants, they would be broken up by the mesh into fine droplets, each about a tenth of a millimeter across, which would greatly increase their chances of sticking.

As an extra bonus, the presence of the mesh over the crops could also protect them from damage from rainstorms, by also breaking up the raindrops into smaller droplets that place less stress on the plant when they strike. Crop damage from storms, which can seriously reduce yields in some cases, may be reduced in the process, the researchers say. In addition, bigger drops cause more splashing, which can lead to a spread of pathogens.

Besides being more efficient, the process may also reduce the problem of drift of pesticides, which sometimes blow from one farmer's field to another, and even from one state to another, Varanasi says, and also sometimes end up in people's homes. "People want to fix this. They're looking for solutions."

The same principle could be applied to other uses, Girard points out, such as the spraying of water into cooling towers such as those used for electric power plants and many industrial or chemical plants. Using a mesh below the spray heads in such towers "can create finer droplets, which evaporate faster and provide better cooling," he says. Cooling efficiency is related to the drop's surface area, which is three orders of magnitude greater with the finer droplets, he says.

In recent work, Varanasi and his team found a way to recover much of the water that gets lost to evaporation from such cooling towers, by using a different kind of mesh over the towers' top. The new finding could be combined with that method, thus improving power plant efficiency on both the input and output sides.

For painting and for applying other kinds of coatings, the finer the droplets are, the better they cover and adhere, Girard says, so the process could improve the quality and durability of the coatings.

While most existing atomization methods rely on high pressure to force liquid through a narrow opening, which requires energy to create the pressure, this method is purely passive and mechanical, Girard says. "Here, we let the mesh do the atomization essentially for free."
-end-
The team included Antoine Le Helloco, and Thomas Binder at MIT and David Quere at CNRS in Paris. The work was supported by the MIT-France program.

ADDITIONAL BACKGROUND

ARCHIVE: New system recovers fresh water from power plants http://news.mit.edu/2018/new-system-recovers-fresh-water-power-plants-0608

ARCHIVE: Stick, peel, or bounce: Controlling a freezing droplet's fate http://news.mit.edu/2017/stick-peel-bounce-controlling-freezing-droplets-0911

ARCHIVE: Reducing runoff pollution by making spray droplets less bouncy http://news.mit.edu/2016/reducing-runoff-pollution-making-spray-droplets-less-bouncy-0830

Massachusetts Institute of Technology

Related Pesticides Articles from Brightsurf:

More plant diversity, less pesticides
Increasing plant diversity enhances the natural control of insect herbivory in grasslands.

In pursuit of alternative pesticides
Controlling crop pests is a key element of agriculture worldwide, but the environmental impact of insecticides is a growing concern.

Two pesticides approved for use in US harmful to bees
A previously banned insecticide, which was approved for agricultural use last year in the United States, is harmful for bees and other beneficial insects that are crucial for agriculture, and a second pesticide in widespread use also harms these insects.

Dingoes have gotten bigger over the last 80 years - and pesticides might be to blame
The average size of a dingo is increasing, but only in areas where poison-baits are used, a collaborative study led by UNSW Sydney shows.

Pesticides can protect crops from hydrophobic pollutants
Researchers have revealed that commercial pesticides can be applied to crops in the Cucurbitaceae family to decrease their accumulation of hydrophobic pollutants, thereby improving crop safety.

Honeybee lives shortened after exposure to two widely used pesticides
The lives of honeybees are shortened -- with evidence of physiological stress -- when they are exposed to the suggested application rates of two commercially available and widely used pesticides.

Pesticides increase the risk of schistosomiasis, a tropical disease
Schistosomiasis is a severe infectious disease caused by parasitic worms.

A proposal to change environmental risk assessment for pesticides
Despite regulatory frameworks designed to prevent environmental damage, pesticide use is still linked to declines in insects, birds and aquatic species, an outcome that raises questions about the efficacy of current regulatory procedures.

SDHI pesticides are toxic for human cells
French scientists led by a CNRS researcher have just revealed that eight succinate dehydrogenase inhibitor pesticide molecules do not just inhibit the SDH activity of fungi, but can also block that of earthworms, bees, and human cells in varying proportions.

Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.

Read More: Pesticides News and Pesticides Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.