Tree swallow study: Stressful events have long-term health impacts

August 28, 2018

ITHACA, N.Y. - Little is known about how brief yet acute stressors - such as war, natural disasters and terror attacks - affect those exposed to them, though human experience suggests they have long-term impacts.

Two recent studies of tree swallows uncover long-term consequences of such passing but major stressful events. Both studies provide information on how major stressful events have lasting effects and why some individuals are more susceptible to those impacts than others.

"We aren't looking at humans in either of these studies, but this research certainly could have implications for how humans respond to stress," said Maren Vitousek, assistant professor in the Department of Ecology and Evolutionary Biology. "The basic way that most vertebrates respond to stress is quite similar. We often see similar things predicting stress resilience in humans and in other animals."

The first study was published in Proceedings of the Royal Society B. Vitousek is the paper's first author.

The researchers developed a new method for manipulating hormone levels in free-living birds: They dissolved a stress hormone (glucocorticoid) in a gel and put it on eggs in tree swallow nests. The females, the only ones who incubate, absorbed the hormone through their skin. They were given five separate doses for an hour each early in their reproductive periods.

After absorbing the hormone, females fed their offspring at lower rates once they hatched, which led to much smaller offspring compared to two types of controls (one type with gel but no hormone on an egg and the other undisturbed). The smaller offspring in turn had lower survival rates.

"The take-home message here is that the hormones that birds would be exposed to if they had a short-term stressor do have these long-term effects," Vitousek said.

The researchers also found that birds exposed to higher doses of glucocorticoid were more likely to endure lingering impacts, she said. This result suggests that individuals who naturally mount a stronger hormonal response to brief challenges may be at greater risk of suffering from lingering effects of stress, Vitousek said.

The second study, published in the Royal Society's Biology Letters, used similar methods to examine conditions that predict susceptibility to stress and why some individuals cope with stress better than others.

In this study, led by first author and postdoctoral associate Conor Taff, birds were caught and the researchers measured baseline stress hormone levels, how high they increased from the stress of capture and how quickly they returned to normal levels. The birds were then released and exposed to glucocorticoid on eggs, using the same protocol as the previous study. After these birds absorbed the hormone, the researchers measured how fast they recovered to their baseline hormone levels.

There was a lot of variation among the birds, but a pattern revealed birds that were better able to turn off that initial stress response to capture also returned to baseline levels faster following glucocorticoid exposure.

"Individuals that are more naturally stress resilient are those that are better able to turn off this response to begin with," Vitousek said.

Future work will focus on the role of social interactions in stress. "Birds that are more socially connected are more stress-resilient, so we're interested in whether those social interactions are actually causally effecting stress resilience or not," Vitousek said.
The studies were funded by the National Science Foundation.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Cornell University

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to