Nav: Home

Cancer cells 'corrupt' their healthy neighbors

August 28, 2019

The healthy cells immediately surrounding a tumour become more stem cell-like and support cancer growth, reveals a new study published in Nature.

The discovery was made using a new state-of-the-art technique developed by researchers in Ilaria Malanchi's lab at the Crick in order to study the tissue around a tumour - called the tumour microenvironment - known to influence the growth and spread of cancer, as well as treatment response.

"Our new technique allows us to study changes to cells in the tumour microenvironment with unprecedented precision," says Ilaria, who joint-led the project. "This helps us to understand how these changes relate to tumour growth and metastasis, allowing us to develop better strategies to treat the disease.

"We discovered that non-cancerous cells in the tumour microenvironment regress back into a stem-cell like state, and actually support cancer growth. By corrupting its neighbours, cancer transforms its local environment to support its own survival."

This new technique relies on cancer cells engineered to release a cell-penetrating fluorescent protein that gets taken up by its neighbouring cells. These colour-labelled cells can be identified and compared to other (unlabelled) cells that have not come into contact with the tumour. Researchers in Ilaria's lab used this approach in mice to study the cells around breast cancer that had spread to the lungs. Data from Alessandro Ori's lab at the Fritz Lipmann Institute in Germany confirmed that the labelled cells produced different proteins to unlabelled cells.

The researchers found labelled cells from the lung to have stem cell-like features, unlike the lung cells found outside of the tumour microenvironment. The team showed that those cells from the mouse lungs supported tumour growth when mixed with tumour cells in 3D culture in the lab, suggesting that they help the cancer to survive and grow.

In order to further test the potential of the stem-cell like cells in the tumour microenvironment, Ilaria teamed up with Joo-Hyeon Lee at the Wellcome Trust/MRC Stem Cell Institute, who used them to grow lung organoids, or 'mini-lungs'.

The unlabelled healthy lung cells formed mini-lungs, mostly made up of alveolar epithelial cells which line the lung's alveoli - the tiny sacs where gas exchange takes place. By comparison, the labelled cells taken from the tumour microenvironment unexpectedly formed mini-lungs with a wider range of cell types.

"To our amazement, we found that cells receiving proteins from adjacent cancer cells obtained stem-cell-like features", explains Joo-Hyeon Lee, joint senior author of the paper. "They could change their fate to become different cell types. It demonstrates the powerful influence that cancer exerts over its neighbouring cells, making them liable to change easily."

The researchers hope that their approach will be used by other scientists looking to gain a deeper understanding of the local changes triggered by cancer which help it to survive, spread and develop resistance to treatments.

The potential applications are not confined to cancer - a similar approach could enable scientists to study interactions between different cell types in the body.
-end-


The Francis Crick Institute

Related Breast Cancer Articles:

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.
Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
More Breast Cancer News and Breast Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.