Climate change, human activity lead to nearshore coral growth decline

August 28, 2019

New research from the University of North Carolina at Chapel Hill compares the growth rates between nearshore and offshore corals in the Belize Mesoamerican Barrier Reef System, the world's second-largest reef system. While nearshore corals have historically grown faster than those offshore, over the past decade there was a decline in the growth rates of two types of nearshore corals, while offshore coral growth rates in the same reef system stayed the same.

Coral reefs are a critical source of food, income and storm protection for millions of people worldwide. Nearshore corals grow in warmer and more nutrient-rich waters than their offshore counterparts and, because of their warmer temperatures, are believed to give a glimpse into the coral reefs of the future. This growth decline leads researchers to believe that any previous environmental advantage that came from corals being located closer to shore has now diminished. This is likely due to climate change and human activities, like coastal development that introduces excess sediment and nutrients to the water, subjecting corals close to shore to higher levels of stress. The findings also suggest that over time climate change will slow the growth of nearshore and offshore corals throughout the world.

"This research leaves us with troubling questions, like whether or not corals will be able to adapt to future conditions, and, if not, how that will impact the health and well-being of the millions of people around the world who rely on reefs for their food, income and protection from storms," said Justin Baumann, postdoctoral researcher in marine sciences and biology at the University of North Carolina at Chapel Hill. "Since we don't know the answer to these questions, it remains crucial that we carefully manage and protect reefs so that they will have the best possible chance to acclimate, adapt, and, hopefully, survive the impacts of climate change."

Baumann is lead author of the paper, which was published in Global Change Biology on Aug. 28.

The research team looked at the relationship between growth rates and specific acute stress events, such as coral bleaching. Coral bleaching happens when corals become stressed by pollution or increased ocean temperature and the colorful algae living inside of coral tissue are expelled, causing the coral to turn white. They found that while coral bleaching events can slow the growth of coral, the long-term declines in nearshore coral growth appear to be driven by the chronic stress of rising water temperatures due to climate change combined with increasing land-based stresses like development along the coast.

The study evaluated corals that were located along a 300-kilometer stretch of the Belize portion of the Mesoamerican Barrier Reef System. The nearshore coral reefs were within 10 kilometers of Belize's coast and the offshore coral reefs were 30-60 kilometers away from mainland Belize. Scuba divers collected 124 coral core samples for the study. A coral's core has growth bands that show its age, similar to the rings on a tree. The cores were taken from 19 sites, providing a sample size large enough to represent the entire reef system.

In the lab, the research team performed CT scans on the cores to measure the yearly vertical growth rate of the coral skeletons for each core. Reefs that have lower vertical growth rates are expected to be less diverse and complex. They also offer less protection to the shoreline and provide less area for fish and other invertebrates to live. The extent to which these reef changes will harm the communities that rely on them for food, income and protection against storms is yet to be seen.

"Local action to mitigate stress from coastal development and global action to reduce greenhouse gas emissions will both be necessary to ensure a sustainable future for both nearshore and offshore coral reefs," said Baumann.
-end-
John Rippe of UNC-Chapel Hill's biology department; Justin Ries and Isaac Westfield of Northeastern University's department of marine and environmental sciences; Travis Courtney of UNC-Chapel Hill's department of marine sciences, Northeastern University's department of marine and environmental sciences and University of California San Diego's Scripps Institution of Oceanography; Hannah Aichelman of UNC-Chapel Hill's department of marine sciences and Boston University's department of biological sciences; and Karl Castillo of UNC-Chapel Hill's department of marine sciences and Environment, Ecology and Energy Program also contributed to the study, which was funded by the National Science Foundation, the National Ocean and Atmospheric Administration, and the Rufford Foundation.

About the University of North Carolina at Chapel Hill

The University of North Carolina at Chapel Hill, the nation's first public university, is a global higher education leader known for innovative teaching, research and public service. A member of the prestigious Association of American Universities, Carolina regularly ranks as the best value for academic quality in U.S. public higher education. Now in its third century, the University offers 74 bachelor's, 104 master's, 65 doctorate and seven professional degree programs through 14 schools including the College of Arts & Sciences. Every day, faculty, staff and students shape their teaching, research and public service to meet North Carolina's most pressing needs in every region and all 100 counties. Carolina's nearly 336,000 alumni live in all 50 states, the District of Columbia, U.S. Territories and 164 countries. More than 178,000 live in North Carolina.

University of North Carolina at Chapel Hill

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.