Nav: Home

Grassland biodiversity is blowing in the wind

August 28, 2019

Temperate grasslands are the most endangered but least protected ecosystems on Earth. Grassland restorations are crucial for recovering this important but highly degraded ecosystem. Restored grasslands, however, tend to be more species poor and lose diversity through time as compared to remnant, or never-been plowed, grasslands. A new study from the University of Missouri found that milkweeds and other plants that have seeds carried by the wind are an important source for enriching the diversity of plants in these valuable ecosystems.

"There are many benefits for why we should care about grasslands. They provide food for livestock, habitat for wildlife, prevent soil erosion, support pollinators, and capture a lot of the world's carbon. These benefits derive primarily from the diverse grasses and flowering plants that comprise grassland communities. When we lose that diversity, we risk losing those benefits," said Lauren Sullivan, a grassland ecologist with the Division of Biological Sciences. "We found that spillover, especially of wind-dispersed plant species, is an important means for promoting biodiversity in restored grasslands."

Ecologists describe spillover as the natural movement of species from one habitat to another. The concept is commonly associated with marine habitats, where fish spillover from protected areas can be used to improve adjacent fisheries. Unlike fish, plants rely on external forces, like wind and animals, to move their seeds. Where seeds land also can determine whether they will grow.

"Because plant dispersal and establishment depend not only on who's producing seed but also where the seed is landing, we wanted to know whether and under what conditions spillover could be used to increase biodiversity in grassland systems," said Sullivan.

To do this, Sullivan and her colleagues studied restored prairies that are adjacent to remnant prairies in northwest Minnesota. They included restored prairies with varying levels of diversity. To measure spillover, they cataloged every plant species across the entirety of the remnant site and then in the adjacent restored prairie up to 400 feet from the boundary between the prairies. Plant species included in the original seed mix for the restored prairie were removed from the list, leaving only species that could have arrived by spillover. They examined whether the species richness of the restored prairies and individual plant dispersal traits affected the spillover they observed.

The researchers found evidence of spillover in restorations seeded with a low diversity of species. They also found more spillover of wind-dispersed species than those dispersed by animals or passive mechanisms. They concluded that spillover from remnant prairies is an important factor increasing biodiversity in restored grasslands, but that context matters.

"In the case of grassland ecosystems, we found spillover depends on who you are and where you land. If you have movement mechanisms that allow you to travel further, like wind, you are more likely to spillover and if you are landing in a low diversity environment you are more likely to establish," said Katie P. Sperry, who led the project and is first and corresponding author of the new study. "Importantly, spillover represents a source of species not typically included in seed mixes, such as several members of the daisy and milkweed families."

The research and its findings are highlighted in an Applied Ecologists Blog authored by Lars Brudvig with Michigan State University. According to Brudvig, strategically installing restorations adjacent to remnant grasslands and prioritizing plant species that do not arrive by spillover in seed mixes are two practical applications of the research. "The findings [also] illustrate the broad importance of landscape considerations during restoration and illustrate that connectivity-driven spillover effects may explain some of the variation we observe among restoration efforts." Brudvig was not affiliated with the study.
-end-
The study, titled "Species diversity and dispersal traits alter biodiversity spillover in reconstructed grasslands," appears in the Journal of Applied Ecology.

Additional authors are Haley Hilfer and Ian Lane with the University of Minnesota; Jessica Petersen with the Minnesota Department of Natural Resources; and Philip M. Dixon with Iowa State University.

University of Missouri-Columbia

Related Diversity Articles:

Insect diversity boosted by combination of crop diversity and semi-natural habitats
To enhance the number of beneficial insect species in agricultural land, preserving semi-natural habitats and promoting crop diversity are both needed, according to new research published in the British Ecological Society's Journal of Applied of Ecology.
Ethnolinguistic diversity slows down urban growth
Where various ethnic groups live together, cities grow at a slower rate.
Protecting scientific diversity
The COVID-19 pandemic means that scientists face great challenges because they have to reorient, interrupt or even cancel research and teaching.
Cultural diversity in chimpanzees
Termite fishing by chimpanzees was thought to occur in only two forms with one or multiple tools, from either above-ground or underground termite nests.
Bursts of diversity in the gut microbiota
The diversity of bacteria in the human gut is an important biomarker of health, influences multiple diseases, such as obesity and inflammatory bowel diseases and affects various treatments.
Underestimated chemical diversity
An international team of researchers has conducted a global review of all registered industrial chemicals: some 350,000 different substances are produced and traded around the world -- well in excess of the 100,000 reached in previous estimates.
New world map of fish genetic diversity
An international research team from ETH Zurich and French universities has studied genetic diversity among fish around the world for the first time.
Biological diversity as a factor of production
Can the biodiversity of ecosystems be considered a factor of production?
Fungal diversity and its relationship to the future of forests
Stanford researchers predict that climate change will reduce the diversity of symbiotic fungi that help trees grow.
Brain diseases with molecular diversity
Parkinson's and multisystem atrophy (MSA) - both of them neurodegenerative diseases - are associated with the accumulation of alpha-synuclein proteins in the brain.
More Diversity News and Diversity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.