Nav: Home

Grassland biodiversity is blowing in the wind

August 28, 2019

Temperate grasslands are the most endangered but least protected ecosystems on Earth. Grassland restorations are crucial for recovering this important but highly degraded ecosystem. Restored grasslands, however, tend to be more species poor and lose diversity through time as compared to remnant, or never-been plowed, grasslands. A new study from the University of Missouri found that milkweeds and other plants that have seeds carried by the wind are an important source for enriching the diversity of plants in these valuable ecosystems.

"There are many benefits for why we should care about grasslands. They provide food for livestock, habitat for wildlife, prevent soil erosion, support pollinators, and capture a lot of the world's carbon. These benefits derive primarily from the diverse grasses and flowering plants that comprise grassland communities. When we lose that diversity, we risk losing those benefits," said Lauren Sullivan, a grassland ecologist with the Division of Biological Sciences. "We found that spillover, especially of wind-dispersed plant species, is an important means for promoting biodiversity in restored grasslands."

Ecologists describe spillover as the natural movement of species from one habitat to another. The concept is commonly associated with marine habitats, where fish spillover from protected areas can be used to improve adjacent fisheries. Unlike fish, plants rely on external forces, like wind and animals, to move their seeds. Where seeds land also can determine whether they will grow.

"Because plant dispersal and establishment depend not only on who's producing seed but also where the seed is landing, we wanted to know whether and under what conditions spillover could be used to increase biodiversity in grassland systems," said Sullivan.

To do this, Sullivan and her colleagues studied restored prairies that are adjacent to remnant prairies in northwest Minnesota. They included restored prairies with varying levels of diversity. To measure spillover, they cataloged every plant species across the entirety of the remnant site and then in the adjacent restored prairie up to 400 feet from the boundary between the prairies. Plant species included in the original seed mix for the restored prairie were removed from the list, leaving only species that could have arrived by spillover. They examined whether the species richness of the restored prairies and individual plant dispersal traits affected the spillover they observed.

The researchers found evidence of spillover in restorations seeded with a low diversity of species. They also found more spillover of wind-dispersed species than those dispersed by animals or passive mechanisms. They concluded that spillover from remnant prairies is an important factor increasing biodiversity in restored grasslands, but that context matters.

"In the case of grassland ecosystems, we found spillover depends on who you are and where you land. If you have movement mechanisms that allow you to travel further, like wind, you are more likely to spillover and if you are landing in a low diversity environment you are more likely to establish," said Katie P. Sperry, who led the project and is first and corresponding author of the new study. "Importantly, spillover represents a source of species not typically included in seed mixes, such as several members of the daisy and milkweed families."

The research and its findings are highlighted in an Applied Ecologists Blog authored by Lars Brudvig with Michigan State University. According to Brudvig, strategically installing restorations adjacent to remnant grasslands and prioritizing plant species that do not arrive by spillover in seed mixes are two practical applications of the research. "The findings [also] illustrate the broad importance of landscape considerations during restoration and illustrate that connectivity-driven spillover effects may explain some of the variation we observe among restoration efforts." Brudvig was not affiliated with the study.
-end-
The study, titled "Species diversity and dispersal traits alter biodiversity spillover in reconstructed grasslands," appears in the Journal of Applied Ecology.

Additional authors are Haley Hilfer and Ian Lane with the University of Minnesota; Jessica Petersen with the Minnesota Department of Natural Resources; and Philip M. Dixon with Iowa State University.

University of Missouri-Columbia

Related Diversity Articles:

New way to target cancer's diversity and evolution
Scientists have revealed close-up details of a vital molecule involved in the mix and match of genetic information within cells -- opening up the potential to target proteins of this family to combat cancer's diversity and evolution.
Heterogeneity in the workplace: 'Diversity is very important to us -- but not in my team'
Diversity in the workplace is highly sought in theory, but often still lacking in practice.
Diversity increases ecosystem stability
Freiburg's forestry scientists prove that forests that are more diverse are also more productive and more resilient
Diversity on teams leads to positive outcomes, but not for all
Individuals on teams of diverse people working together can have better outcomes than those on teams with similar individuals, research as shown.
Good medicine depends on diversity
Nearly 80 percent who have contributed DNA for research are of European ancestry.
How can organizations promote and benefit from socioeconomic diversity?
A new white paper has been published by the Society for Industrial and Organizational Psychology.
Back to the sources of neural diversity
The diversity of the tasks the cortex can perform is reflected in the diversity of the neurons that compose it.
Plant diversity increases insect diversity
The more plant species live in grasslands and forests, the more insect species find a habitat there.
Chimpanzees lose their behavioral and cultural diversity
Chimpanzees are well known for their extraordinary diversity of behaviors, with some behaviors also exhibiting cultural variation.
Complete world map of tree diversity
Researchers at the German Centre for Integrative Biodiversity Research (iDiv) and Martin Luther University Halle-Wittenberg (MLU) have succeeded in constructing, from scattered data, a world map of the diversity of tree species.
More Diversity News and Diversity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.