Knowledge about the past can preserve the biodiversity of tomorrow

August 28, 2020

Approximately 40 per cent of terrestrial ecosystems are projected to have experienced shifts in temperature during the past 21,000 years that are similar in pace and magnitude to regional-scale future forecasts.

An international team of scientists led by researchers from the University of Copenhagen and University of Adelaide, has identified and examined past warming events similar to those anticipated in the coming decades, to better understand how species and ecosystems will cope.

"Studying locations in regions such as the Arctic, Eurasia, the Amazon and New Zealand can yield knowledge of how climate has changed and how this has impacted plants and animals. Using advanced new methods, including the use of DNA to map biodiversity and precise methods for dating climate change, we have taken advantage of opportunities to find precise causalities. The past climate changes are similar to those that we expect in coming decades," explains Professor Dorthe Dahl-Jensen.

By mapping the prevalence of species using combined fossil data archives, researchers were able to see how individual plant and animal species -- and entire ecosystems -- have responded to historical temperature increases:

"During large climate shifts of the past, such as the warming from the last ice age to our current interglacial period 11-18,000 years ago, Arctic temperatures have increased by more than 10 degrees Celsius. This is a warming of the same magnitude as the UN predicts can occur in the future, as is described in IPCC reports and forecasts," says Professor Dorthe Dahl-Jensen.

Researchers observed that some species, such as antelope, were able to migrate northward, while others, including the Arctic fox, became extinct in areas of what is now Russia.

This knowledge can be used to predict how plants and animals will respond to future climate changes. During the last interglacial period -- the Eemian Interglacial Stage, from 115-128,000 years ago -- it was warmer, particularly in Arctic regions.

During this time, the central Siberian tundra shifted 200 km northwards, hippos roamed England and giant turtles crawled lazily about the US Midwest.

More accurate forecasts, based upon the past

The new knowledge compiled by researchers can be used to develop more accurate forecasts concerning which plant and animal species are being threatened with extinction.

This in turn can allow for quicker intervention through international conservation measures. The knowledge also makes it possible to map robust ecosystems, which are less sensitive to climate change.

"We have gained access to completely new knowledge about how ecosystems, plants and animals have responded to temperature increases similar to those that we are confronted with today and will be in the future. We can use this knowledge to be at the forefront of protecting and conserving biodiversity. It provides knowledge for us to protect the species that remain," says Associate Professor Anders Svensson of the University of Copenhagen's Niels Bohr Institute.

"Conservation biologists are taking full advantage of the long-term history of the planet as recorded in paleo-archives, such as those gathered by the team, to understand biological responses to abrupt climate changes of the past, quantify trends, and develop scenarios of future biodiversity loss from climate change," says the study's main author, Damien Fordham, of the University of Adelaide and the University of Copenhagen's Globe Institute.

Research into the past demonstrates that many ecosystems are able to adapt to sudden climate change, even when migration is not an option. Thus, it is important to acquire more knowledge and ensure healthy interaction between the planners of future ecosystems and this historical knowledge.

Historical archives also demonstrate that other factors, such as the impact of humans and the establishment of cities, the clearing of forests and changes to ecosystems, also have had a very significant impact on species extinction. Results just published in the journal Science.

The research article illustrates how interdisciplinary research among climate and biodiversity researchers, and the deployment of new methods, better dating and climate models can be used to generate knowledge that will advance our ability to create and preserve ecosystems.
-end-


University of Copenhagen

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.