VCU research: Magnetic nanoparticles for potential cancer treatment

August 29, 2005

RICHMOND, Va. (Aug. 29, 2005) - Virginia Commonwealth University researchers have created highly magnetized nanoparticles based on metallic iron that could one day be used in a non-invasive therapy for cancer in which treatment would begin at the time of detection.

"We envision a potential for these materials to combine both detection and treatment into a single process," said Everett E. Carpenter, Ph.D., an assistant professor of chemistry at VCU.

Carpenter is discussing his ongoing work of the synthesis and characterization of these functional magnetic nanoparticles for use in biomedical applications at the 2005 American Chemical Society National Meeting & Exposition in Washington, D.C., which began Aug. 28 and continues through Sept. 1.

More than 12,000 researchers from across the country are presenting new multidisciplinary research and highlighting important advances in biotechnology, nanoscience, nanotechnology, and defense and homeland security.

"Eventually, our goal is to use the scientific understanding of the growth mechanisms of these nanoparticles to develop materials for biomedical applications," said Carpenter. "By engineering the magnetic properties of enhanced ferrites it is possible to develop materials for the treatment of various cancers, such as breast cancer."

Carpenter and his team are working to determine how to best construct the core-shell structure and learn which shell materials are most ideal for biomedical applications such as magnetodynamic therapy (MDT), or as MRI contrast enhancement agents.

According to Carpenter, in the future it may be possible for a patient to be screened for breast cancer using MRI techniques with engineered enhanced ferrites as the MRI contrast agent. He said if a tumor is detected, the doctor could then increase the power to the MRI coils and localized heating would destroy the tumor region without damage to the surrounding healthy cells.

Another promising biomedical application is MDT, which employs magnetic nanoparticles that are coupled to the radio frequency of the MRI. This coupling converts the radio frequency into heat energy that kills the cancer cells. European researchers studying MDT have shown that nanoparticles are able to target tumor cells. Carpenter said that because the nanoparticles target tumor cells and are substantially smaller than human cells, only the very few tumor cells next to the nanoparticles are killed, which greatly minimizes damage to healthy cells.

"Our goal is to tailor the properties of the nanoparticles to make the use of MDT more universal," said Carpenter. "The only thing slowing down the development of enhanced ferrites for 100 megahertz applications is a lack of understanding of the growth mechanisms and synthesis-property relationships of these nanoparticles.

"By studying the mechanism for the growth of the enhanced ferrites, it will be possible to create shells that help protect the metallic core from oxidation in biologically capable media," he said.

Enhanced ferrites are a class of ferrites that are specially engineered to have enhanced magnetic or electrical properties and are created through the use of core-shell morphology. He said that in this approach the core can be a highly magnetic material like iron or iron alloys, while the shell can be a mixed metal ferrite with tailored resistivity.

"Ferrites (iron oxides) are used in many applications that require both a high magnetization and high electrical resistance; properties which are typically mutually exclusive," said Carpenter. "These two properties are tied not only to the structure of the material but also to the way in which the material is synthesized and processed."

Today, polymer encapsulated iron oxide particles are used in biomedical applications. However, Carpenter said that the high magnetization of the enhanced ferrite nanoparticles may potentially improve the absorption of the radio frequency, thereby providing better detection of tumor regions and the use of less MRI contrast re-agent.

In 2002, Carpenter invented a new material based on metallic iron. He said the magnetic power of the iron nanoparticles he created is 10 times greater than that of the currently available iron oxide nanoparticles, which translates to a substantial reduction in the amount of iron needed for imaging or therapy.
-end-
This work is supported by a grant from the American Cancer Society and the VCU Department of Chemistry.

About VCU and the VCU Medical Center: Located on two downtown campuses in Richmond, Va., Virginia Commonwealth University is ranked nationally by the Carnegie Foundation as a top research institution and enrolls more than 28,500 students in more than 181 certificate, undergraduate, graduate, professional and doctoral programs in the arts, sciences and humanities in 15 schools and one college. Forty of the university's programs are unique in Virginia, and 20 graduate and professional programs have been ranked by U.S. News & World Report as among the best of their kind. MCV Hospitals, clinics and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the leading academic medical centers in the country. For more, see www.vcu.edu.

Virginia Commonwealth University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.