Scripps researchers pinpoint hot spots as earthquake trigger points

August 29, 2012

Scientists at Scripps Institution of Oceanography at UC San Diego have come a step closer to deciphering some of the basic mysteries and mechanisms behind earthquakes and how average-sized earthquakes may evolve into massive earthquakes.

In a paper published in the Aug. 30 issue of the journal Nature, Scripps scientists Kevin Brown and Yuri Fialko describe new information gleaned from laboratory experiments mimicking earthquake processes. The researchers discovered how fault zones weaken in select locations shortly after a fault reaches an earthquake tipping point.

They coined such locations as "melt welts" and describe the mechanism akin to an ice skater's blade reducing friction by melting the ice surface. The mechanism may be similar to "hot spots" known in automobile brake-clutch components.

"Melt welts appear to be working as part of a complicated feedback mechanism where complex dynamic weakening processes become further concentrated into initially highly stressed regions of a fault," said Brown, first author of the study and a professor in the Geosciences Research Division at Scripps. "The process allows highly stressed areas to rapidly break down, acting like the weakest links in the chain. Even initially stable regions of a fault can experience runaway slip by this process if they are pushed at velocities above a key tipping point."

"This adds to the fundamental understanding of the earthquake process because it really addresses the question of how these ruptures become energetic and dynamic and run away for long distances," said Fialko, a paper coauthor and a professor in the Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics at Scripps.

The study's results, supported by funding from the National Science Foundation, appear to help answer a longstanding paradox in seismology. Key fault zones such as the San Andreas Fault produce far too little heat from friction compared with the size and magnitude of the earthquakes they produce. Laboratory experiments show that thermal energy normally released by friction during slip can become rapidly reduced, potentially helping to account for a "low heat flow paradox." The melt welts also may help explain certain questions in earthquake rupture dynamics such as why some slowly slipping tremor-generating events can snowball into massive earthquakes if they pass a velocity tipping point.

"This may be relevant for how you get from large earthquakes to giant earthquakes," said Brown, who used the example of last year's magnitude 9.0 earthquake off Japan. "We thought that large patches of the fault were just creeping along at a constant rate, then all of a sudden they were activated and slipped to produce a mega earthquake that produced a giant tsunami."

Fialko says the melt welt finding could eventually lead to improved "shake" maps of ground-shaking intensities, as well as improvements in structural engineering plans. Future studies include investigations about why the melt welt weakening occurs and if it applies to most or all common fault zone materials, as well as field research to locate melt welts along fault zones.

The Scripps Marine Science Development Center provided the machinery used in the study's experiments.

University of California - San Diego

Related Earthquake Articles from Brightsurf:

Healthcare's earthquake: Lessons from COVID-19
Leaders and clinician researchers from Beth Israel Lahey Health propose using complexity science to identify strategies that healthcare organizations can use to respond better to the ongoing pandemic and to anticipate future challenges to healthcare delivery.

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.

How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.

Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.

Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.

New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.

Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.

Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.

Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.

Read More: Earthquake News and Earthquake Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to