Earphones 'potentially as dangerous as noise from jet engines,' according to new study

August 29, 2012

Turning the volume up too high on your headphones can damage the coating of nerve cells, leading to temporary deafness; scientists from the University of Leicester have shown for the first time.

Earphones or headphones on personal music players can reach noise levels similar to those of jet engines, the researchers said.

Noises louder than 110 decibels are known to cause hearing problems such as temporary deafness and tinnitus (ringing in the ears), but the University of Leicester study is the first time the underlying cell damage has been observed.

The study has been published in the Proceedings of the National Academy of Sciences.

University of Leicester researcher Dr Martine Hamann of the Department of Cell Physiology and Pharmacology, who led the study, said:

"The research allows us to understand the pathway from exposure to loud noises to hearing loss. Dissecting the cellular mechanisms underlying this condition is likely to bring a very significant healthcare benefit to a wide population. The work will help prevention as well as progression into finding appropriate cures for hearing loss."

Nerve cells that carry electrical signals from the ears to the brain have a coating called the myelin sheath, which helps the electrical signals travel along the cell. Exposure to loud noises - i.e. noise over 110 decibels - can strip the cells of this coating, disrupting the electrical signals. This means the nerves can no longer efficiently transmit information from the ears to the brain.

However, the coating surrounding the nerve cells can reform, letting the cells function again as normal. This means hearing loss can be temporary, and full hearing can return, the researchers said.

Dr Hamann explained: "We now understand why hearing loss can be reversible in certain cases. We showed that the sheath around the auditory nerve is lost in about half of the cells we looked at, a bit like stripping the electrical cable linking an amplifier to the loudspeaker. The effect is reversible and after three months, hearing has recovered and so has the sheath around the auditory nerve."

The findings are part of ongoing research into the effects of loud noises on a part of the brain called the dorsal cochlear nucleus, the relay that carries signals from nerve cells in the ear to the parts of the brain that decode and make sense of sounds. The team has already shown that damage to cells in this area can cause tinnitus - the sensation of 'phantom sounds' such as buzzing or ringing.
-end-
The research was funded by the Wellcome Trust, Medisearch, GlaxoSmithkline and the Royal Society.

Notes for editors:

For more information contact: Martine Hamann, email: mh86@le.ac.uk

PNAS reference: Mechanisms contributing to central excitability changes during hearing loss. Pilati N, Ison MJ, Barker M, Mulheran M, Large CH, Forsythe ID, Matthias J, Hamann M.

Proc Natl Acad Sci U S A. 2012 May 22;109(21):8292-7. Epub 2012 May 7

The research was funded by Wellcome Trust, Medisearch (running costs), GlaxoSmithkline (PhD studentship for Nadia Pilati), Royal Society (equipment grant).

University of Leicester

Related Hearing Loss Articles from Brightsurf:

Proof-of-concept for a new ultra-low-cost hearing aid for age-related hearing loss
A new ultra-affordable and accessible hearing aid made from open-source electronics could soon be available worldwide, according to a study published September 23, 2020 in the open-access journal PLOS ONE by Soham Sinha from the Georgia Institute of Technology, Georgia, US, and colleagues.

Ultra-low-cost hearing aid could address age-related hearing loss worldwide
Using a device that could be built with a dollar's worth of open-source parts and a 3D-printed case, researchers want to help the hundreds of millions of older people worldwide who can't afford existing hearing aids to address their age-related hearing loss.

Understanding the link between hearing loss and dementia
Scientists have developed a new theory as to how hearing loss may cause dementia and believe that tackling this sensory impairment early may help to prevent the disease.

Study uncovers hair cell loss as underlying cause of age-related hearing loss
In a study of human ear tissues, scientists have demonstrated that age-related hearing loss is mainly caused by damage to hair cells.

Hair cell loss causes age-related hearing loss
Age-related hearing loss has more to do with the death of hair cells than the cellular battery powering them wearing out, according to new research in JNeurosci.

How hearing loss in old age affects the brain
If your hearing deteriorates in old age, the risk of dementia and cognitive decline increases.

Examining associations between hearing loss, balance
About 3,800 adults 40 and older in South Korea participating in a national health survey were included in this analysis that examined associations between hearing loss and a test of their ability to retain balance.

Veterinarians: Dogs, too, can experience hearing loss
Just like humans, dogs are sometimes born with impaired hearing or experience hearing loss as a result of disease, inflammation, aging or exposure to noise.

Victorian child hearing-loss databank to go global
A unique databank that profiles children with hearing loss will help researchers globally understand why some children adapt and thrive, while others struggle.

Hearing loss, dementia risk in population of Taiwan
A population-based study using data from the National Health Insurance Research Database of Taiwan suggests hearing loss is associated with risk of dementia.

Read More: Hearing Loss News and Hearing Loss Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.