URI oceanographers find there is one-third less life on Earth

August 29, 2012

NARRAGANSETT, R.I. - August 29, 2012 -- Estimates of the total mass of all life on Earth should be reduced by about one third, based on the results of a study by a team of scientists at the University of Rhode Island's Graduate School of Oceanography and colleagues in Germany.

The research was published this week in the Proceedings of the National Academy of Science.

According to previous estimates, about one thousand billion tons of carbon is stored in living organisms, of which 30 percent is in single-cell microbes in the ocean floor and 55 percent reside in land plants. The researchers have now revised the number downward. Instead of 300 billion tons of carbon in subseafloor microbes, they estimate these organisms contain only about 4 billion tons. This reduces the total amount of carbon stored in living organisms by about one-third.

"Previous estimates of microbial biomass in the ocean sediments were hindered by a limited number of sample locations preferentially located in near-shore, high-productivity regions," explained Rob Pockalny, URI associate marine research scientist. "With support from the National Science Foundation, we were able to obtain samples from the middle of the Pacific Ocean in some of the lowest productivity regions in the ocean."

Earlier estimates were based on drill cores that were taken close to shore or in very nutrient-rich areas.

"About half of the world's ocean is extremely nutrient-poor. For the last 10 years it was already suspected that subseafloor biomass was overestimated," explained Jens Kallmeyer at the University of Potsdam, Germany. "Unfortunately there were no data to prove it."

So the research team, which also included URI oceanographers David Smith and Steven D'Hondt, collected sediment cores from areas that were far away from any coasts and islands. The six-year work showed that there were up to 100,000 times fewer cells in sediments from open-ocean areas, which are dubbed "deserts of the sea" due to their extreme nutrient depletion, than in coastal sediments.

Pockalny said that the scientists were able to make predictions about microbial distributions in some regions of the world's oceans based on simple parameters like sediment accumulation rate and distance from shore.

With this new data, the scientists recalculated the total biomass in marine sediments and found drastically lower values. The new findings contribute to a better picture of the distribution of living biomass on Earth.

Despite of the high logistical and financial efforts for marine drilling operations, there are more data about the abundance of living biomass in the sea floor than about their abundance on land.

University of Rhode Island

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.