Nav: Home

Plants' future water use affects long-term drought estimates

August 29, 2016

As humans pump carbon dioxide into the atmosphere and global temperatures rise, many questions loom. One major issue is how much fresh water will be available for people, forests and agriculture.

A study led by the University of Washington shows that popular long-term drought estimates have a major flaw: They ignore the fact that plants will be less thirsty as carbon dioxide rises. The study shows that shifts in how plants use water could roughly halve the extent of climate change-induced droughts.

"Plants matter," said Abigail Swann, a UW assistant professor of atmospheric sciences and biology. "A number of studies assume that plant water needs are staying constant, when what we know about plants growing in lots of carbon dioxide suggests the opposite."

She is lead author of the study published the week of Aug. 29 in the Proceedings of the National Academy of Sciences.

Recent studies have estimated that more than 70 percent of our planet will experience more drought as carbon dioxide levels quadruple from pre-industrial levels over about the next 100 years. But when Swann and her co-authors account for changes in plants' water needs, this falls to 37 percent, with bigger differences concentrated in certain regions.

"It's a significant effect," Swann said. The reason is that when Earth's atmosphere holds more carbon dioxide, plants actually benefit from having more of the molecules they need to build their carbon-rich bodies. Plants take in carbon dioxide through tiny openings, called stomata, that cover their leaves. But as they draw in carbon dioxide, moisture escapes. When carbon dioxide is more plentiful, the stomata don't need to be open for as long, and so the plants lose less water. The plants thus draw less water from the soil through their roots.

Global climate models already account for these changes in plant growth. But many estimates of future drought use today's standard indices, like the Palmer Drought Severity Index, which only consider atmospheric variables such as future temperature, humidity and precipitation.

"I had a very strong suspicion that you would get a different answer if you considered how the plants were responding," Swann said.

The study compares today's drought indices with ones that take into account changes in plant water use.

It confirms that reduced precipitation will increase droughts across southern North America, southern Europe and northeastern South America. But the results show that in Central Africa and temperate Asia -- including China, the Middle East, East Asia and most of Russia -- water conservation by plants will largely counteract the parching due to climate change.

Planners will need accurate long-term drought predictions to design future water supplies, anticipate ecosystem stresses, project wildfire risks and decide where to locate agricultural fields.

"In some sense there's an easy solution to this problem, which is we just have to create new metrics that take into account what the plants are doing," Swann said. "We already have the information to do that; we just have to be more careful about ensuring that we're considering the role of the plants."

Is this good news for climate change? Although the drying may be less extreme than in some current estimates, droughts will certainly increase, researchers said, and other aspects of climate change could have severe effects on vegetation.

"There's a lot we don't know, especially about hot droughts," Swann said. The same drought at a higher temperature might have more severe impacts, she noted, or might make plants more stressed and susceptible to pests. "Even if droughts are not extremely more prevalent or frequent, they may be more deadly when they do happen," she said.
-end-
The co-authors are Forrest Hoffman at Oak Ridge National Laboratory, Charles Koven at Lawrence Berkeley National Laboratory and James Randerson at the University of California, Irvine. The research was funded by the National Science Foundation and the U.S. Department of Energy.

For more information, contact Swann at 206-616-0486 or aswann@uw.edu.

University of Washington

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...