Nav: Home

Plants' future water use affects long-term drought estimates

August 29, 2016

As humans pump carbon dioxide into the atmosphere and global temperatures rise, many questions loom. One major issue is how much fresh water will be available for people, forests and agriculture.

A study led by the University of Washington shows that popular long-term drought estimates have a major flaw: They ignore the fact that plants will be less thirsty as carbon dioxide rises. The study shows that shifts in how plants use water could roughly halve the extent of climate change-induced droughts.

"Plants matter," said Abigail Swann, a UW assistant professor of atmospheric sciences and biology. "A number of studies assume that plant water needs are staying constant, when what we know about plants growing in lots of carbon dioxide suggests the opposite."

She is lead author of the study published the week of Aug. 29 in the Proceedings of the National Academy of Sciences.

Recent studies have estimated that more than 70 percent of our planet will experience more drought as carbon dioxide levels quadruple from pre-industrial levels over about the next 100 years. But when Swann and her co-authors account for changes in plants' water needs, this falls to 37 percent, with bigger differences concentrated in certain regions.

"It's a significant effect," Swann said. The reason is that when Earth's atmosphere holds more carbon dioxide, plants actually benefit from having more of the molecules they need to build their carbon-rich bodies. Plants take in carbon dioxide through tiny openings, called stomata, that cover their leaves. But as they draw in carbon dioxide, moisture escapes. When carbon dioxide is more plentiful, the stomata don't need to be open for as long, and so the plants lose less water. The plants thus draw less water from the soil through their roots.

Global climate models already account for these changes in plant growth. But many estimates of future drought use today's standard indices, like the Palmer Drought Severity Index, which only consider atmospheric variables such as future temperature, humidity and precipitation.

"I had a very strong suspicion that you would get a different answer if you considered how the plants were responding," Swann said.

The study compares today's drought indices with ones that take into account changes in plant water use.

It confirms that reduced precipitation will increase droughts across southern North America, southern Europe and northeastern South America. But the results show that in Central Africa and temperate Asia -- including China, the Middle East, East Asia and most of Russia -- water conservation by plants will largely counteract the parching due to climate change.

Planners will need accurate long-term drought predictions to design future water supplies, anticipate ecosystem stresses, project wildfire risks and decide where to locate agricultural fields.

"In some sense there's an easy solution to this problem, which is we just have to create new metrics that take into account what the plants are doing," Swann said. "We already have the information to do that; we just have to be more careful about ensuring that we're considering the role of the plants."

Is this good news for climate change? Although the drying may be less extreme than in some current estimates, droughts will certainly increase, researchers said, and other aspects of climate change could have severe effects on vegetation.

"There's a lot we don't know, especially about hot droughts," Swann said. The same drought at a higher temperature might have more severe impacts, she noted, or might make plants more stressed and susceptible to pests. "Even if droughts are not extremely more prevalent or frequent, they may be more deadly when they do happen," she said.
-end-
The co-authors are Forrest Hoffman at Oak Ridge National Laboratory, Charles Koven at Lawrence Berkeley National Laboratory and James Randerson at the University of California, Irvine. The research was funded by the National Science Foundation and the U.S. Department of Energy.

For more information, contact Swann at 206-616-0486 or aswann@uw.edu.

University of Washington

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...