Nav: Home

High-tech electronics made from autumn leaves

August 29, 2017

WASHINGTON, D.C., August, 29, 2017 -- Northern China's roadsides are peppered with deciduous phoenix trees, producing an abundance of fallen leaves in autumn. These leaves are generally burned in the colder season, exacerbating the country's air pollution problem. Investigators in Shandong, China, recently discovered a new method to convert this organic waste matter into a porous carbon material that can be used to produce high-tech electronics. The advance is reported in the Journal of Renewable and Sustainable Energy, by AIP Publishing.

The investigators used a multistep, yet simple, process to convert tree leaves into a form that could be incorporated into electrodes as active materials. The dried leaves were first ground into a powder, then heated to 220 degrees Celsius for 12 hours. This produced a powder composed of tiny carbon microspheres. These microspheres were then treated with a solution of potassium hydroxide and heated by increasing the temperature in a series of jumps from 450 to 800 C.

The chemical treatment corrodes the surface of the carbon microspheres, making them extremely porous. The final product, a black carbon powder, has a very high surface area due to the presence of many tiny pores that have been chemically etched on the surface of the microspheres. The high surface area gives the final product its extraordinary electrical properties.

The investigators ran a series of standard electrochemical tests on the porous microspheres to quantify their potential for use in electronic devices. The current-voltage curves for these materials indicate that the substance could make an excellent capacitor. Further tests show that the materials are, in fact, supercapacitors, with specific capacitances of 367 Farads/gram, which are over three times higher than values seen in some graphene supercapacitors.

A capacitor is a widely used electrical component that stores energy by holding a charge on two conductors, separated from each other by an insulator. Supercapacitors can typically store 10-100 times as much energy as an ordinary capacitor, and can accept and deliver charges much faster than a typical rechargeable battery. For these reasons, supercapacitive materials hold great promise for a wide variety of energy storage needs, particularly in computer technology and hybrid or electric vehicles.

The research, led by Hongfang Ma of Qilu University of Technology, has been heavily focused on looking for ways to convert waste biomass into porous carbon materials that can be used in energy storage technology. In addition to tree leaves, the team and others have successfully converted potato waste, corn straw, pine wood, rice straw and other agricultural wastes into carbon electrode materials. Professor Ma and her colleagues hope to improve even further on the electrochemical properties of porous carbon materials by optimizing the preparation process and allowing for doping or modification of the raw materials.

The supercapacitive properties of the porous carbon microspheres made from phoenix tree leaves are higher than those reported for carbon powders derived from other biowaste materials. The fine scale porous structure seems to be key to this property, since it facilitates contact between electrolyte ions and the surface of the carbon spheres, as well as enhancing ion transfer and diffusion on the carbon surface. The investigators hope to improve even further on these electrochemical properties by optimizing their process and allowing for doping or modification of the raw materials.
-end-
The article, "Supercapacitive performance of porous carbon materials derived from tree leaves," is authored by Hongfang Ma, Zhibao Liu, Xiaodan Wang and Rongyan Jiang. The article appeared in the Journal of Renewable and Sustainable Energy August 29, 2017 [DOI: 10.1063/1.4997019] and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4997019.

ABOUT THE JOURNAL

Journal of Renewable and Sustainable Energy is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. See http://aip.scitation.org/journal/rse.

American Institute of Physics

Related Energy Storage Articles:

Breakthrough enables storage and release of mechanical waves without energy loss
A new discovery by researchers at the Advanced Science Research Center at The Graduate Center, CUNY could allow light and sound waves to be stored intact for an indefinite period of time and then direct it toward a desired location on demand.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy storage in the Midwest and beyond: A timely analysis
As the Federal Energy Regulatory Commission (FERC) released an update to last year's order on energy storage, MRS Energy & Sustainability today publishes a timely collection of papers that unpack the issue of energy storage in the Midwest and beyond.
Engineered bacteria could be missing link in energy storage
One of the big issues with sustainable energy systems is how to store electricity that's generated from wind, solar and waves.
Need more energy storage? Just hit 'print'
Drexel University researchers have developed a conductive ink made from a special type of material they discovered, called MXene, that was used by the Trinity College researchers to print components for electronic devices.
More Energy Storage News and Energy Storage Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...