Nav: Home

High-tech electronics made from autumn leaves

August 29, 2017

WASHINGTON, D.C., August, 29, 2017 -- Northern China's roadsides are peppered with deciduous phoenix trees, producing an abundance of fallen leaves in autumn. These leaves are generally burned in the colder season, exacerbating the country's air pollution problem. Investigators in Shandong, China, recently discovered a new method to convert this organic waste matter into a porous carbon material that can be used to produce high-tech electronics. The advance is reported in the Journal of Renewable and Sustainable Energy, by AIP Publishing.

The investigators used a multistep, yet simple, process to convert tree leaves into a form that could be incorporated into electrodes as active materials. The dried leaves were first ground into a powder, then heated to 220 degrees Celsius for 12 hours. This produced a powder composed of tiny carbon microspheres. These microspheres were then treated with a solution of potassium hydroxide and heated by increasing the temperature in a series of jumps from 450 to 800 C.

The chemical treatment corrodes the surface of the carbon microspheres, making them extremely porous. The final product, a black carbon powder, has a very high surface area due to the presence of many tiny pores that have been chemically etched on the surface of the microspheres. The high surface area gives the final product its extraordinary electrical properties.

The investigators ran a series of standard electrochemical tests on the porous microspheres to quantify their potential for use in electronic devices. The current-voltage curves for these materials indicate that the substance could make an excellent capacitor. Further tests show that the materials are, in fact, supercapacitors, with specific capacitances of 367 Farads/gram, which are over three times higher than values seen in some graphene supercapacitors.

A capacitor is a widely used electrical component that stores energy by holding a charge on two conductors, separated from each other by an insulator. Supercapacitors can typically store 10-100 times as much energy as an ordinary capacitor, and can accept and deliver charges much faster than a typical rechargeable battery. For these reasons, supercapacitive materials hold great promise for a wide variety of energy storage needs, particularly in computer technology and hybrid or electric vehicles.

The research, led by Hongfang Ma of Qilu University of Technology, has been heavily focused on looking for ways to convert waste biomass into porous carbon materials that can be used in energy storage technology. In addition to tree leaves, the team and others have successfully converted potato waste, corn straw, pine wood, rice straw and other agricultural wastes into carbon electrode materials. Professor Ma and her colleagues hope to improve even further on the electrochemical properties of porous carbon materials by optimizing the preparation process and allowing for doping or modification of the raw materials.

The supercapacitive properties of the porous carbon microspheres made from phoenix tree leaves are higher than those reported for carbon powders derived from other biowaste materials. The fine scale porous structure seems to be key to this property, since it facilitates contact between electrolyte ions and the surface of the carbon spheres, as well as enhancing ion transfer and diffusion on the carbon surface. The investigators hope to improve even further on these electrochemical properties by optimizing their process and allowing for doping or modification of the raw materials.
-end-
The article, "Supercapacitive performance of porous carbon materials derived from tree leaves," is authored by Hongfang Ma, Zhibao Liu, Xiaodan Wang and Rongyan Jiang. The article appeared in the Journal of Renewable and Sustainable Energy August 29, 2017 [DOI: 10.1063/1.4997019] and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4997019.

ABOUT THE JOURNAL

Journal of Renewable and Sustainable Energy is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. See http://aip.scitation.org/journal/rse.

American Institute of Physics

Related Energy Storage Articles:

Magnetoelectric memory cell increases energy efficiency for data storage
A team of researchers has now developed a magnetoelectric random access memory (MELRAM) cell that has the potential to increase power efficiency, and thereby decrease heat waste, by orders of magnitude for read operations at room temperature.
Thin layers of water hold promise for the energy storage of the future
Researchers have found that a material which incorporates atomically thin layers of water is able to store and deliver energy much more quickly than the same material that doesn't include the water layers.
Current Graphene Science tours its journey of high-performance energy storage devices
Graphene has made its fathomable pathway over wide range of user-friendly energy storage devices.
Bio-inspired energy storage: A new light for solar power
Inspired by the western Swordfern, a groundbreaking prototype could be the answer to the storage challenge still holding solar back as a total energy solution.
Stabilizing energy storage
University of Utah and University of Michigan chemists, participating in a US Department of Energy consortium, predict a better future for these types of batteries, called redox flow batteries.
New hydronium-ion battery presents opportunity for more sustainable energy storage
A new type of battery shows promise for sustainable, high-power energy storage.It's the world's first battery to use only hydronium ions as the charge carrier.
Nanoscale view of energy storage
Through long shifts at the helm of a highly sophisticated microscope, researchers at Stanford recorded reactions at near-atomic-scale resolution.
Sandia Labs, Singapore join forces to develop energy storage
Sandia National Laboratories has signed a Cooperative Research and Development Agreement (CRADA) with the government of Singapore's Energy Market Authority (EMA) that will tap into the labs' expertise in energy storage.
New biofuel cell with energy storage
Researchers have developed a hybrid of a fuel cell and capacitor on a biocatalytic basis.
Energy storage system of tomorrow tested for the first time in Lake Constance
How can the enormous amounts of electricity generated through offshore wind power be temporarily stored on site?

Related Energy Storage Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...