Biodegradable plastic blends offer new options for disposal

August 29, 2018

Imagine throwing your empty plastic water bottle into a household composting bin that breaks down the plastic and produces biogas to help power your home. Now, researchers have taken an early step toward this futuristic scenario by showing that certain blends of bioplastics can decompose under diverse conditions. They report their results in the ACS journal Environmental Science & Technology.

Plastic waste pollution is a global environmental problem, particularly in oceans, where plastic debris can harm or kill sea animals and birds who ingest or become entangled in it. Despite increased levels of recycling in many countries, most plastic waste still ends up in landfills or the environment. Scientists have developed biodegradable plastics, but they often lack the flexibility, strength or toughness of conventional plastics. Blends of different bioplastics can offer improved characteristics, but their environmental fate is uncertain. Tanja Narancic, Kevin O'Connor, Ramesh Babu Padamati and colleagues wanted to examine the degradation of individual bioplastics and their blends under various conditions.

The researchers studied the fates of 15 different plastics or blends under managed conditions, such as composting and anaerobic digestion, as well as unmanaged environments, including soil and fresh or marine water. Polylactic acid (PLA) is one of the best-selling biodegradable plastics on the market, but it requires high temperatures for breakdown and is not home-compostable. Surprisingly, a blend of PLA and polycaprolactone (PCL) degraded completely to carbon dioxide, biomass and water under typical home-composting conditions. Many of the individual plastics and blends that were tested decomposed under conditions of anaerobic digestion, a process that can produce biogas, and all degraded with industrial composting. The researchers say that biodegradable plastic blends could create new possibilities for managing plastic waste. However, only two plastics, polyhydroxybutyrate (PHB) and thermoplastic starch (TPS), broke down completely under all soil and water conditions. Therefore, biodegradable plastics are not a panacea for plastic pollution, and they must be managed carefully after they leave the consumer, the researchers say.
-end-
The authors acknowledge funding from the European Commission Horizon 2020 Programme, the European Commission Seventh Framework Programme for Research and the Science Foundation Ireland.

The paper's abstract will be available on August 29 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.est.8b02963

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Plastics Articles from Brightsurf:

Bioplastics no safer than other plastics
Bioplastics contain substances that are as toxic as those in ordinary plastics.

A first-of-its-kind catalyst mimics natural processes to break down plastics
A team of scientists led by the U.S. Department of Energy's Ames Laboratory has developed a first-of-its-kind catalyst that is able to process polyolefin plastics, types of polymers widely used in things like plastic grocery bags, milk jugs, shampoo bottles, toys, and food containers.

Plastics, waste and recycling: It's not just a packaging problem
Discussions of the growing plastic waste problem often focus on reducing the volume of single-use plastic packaging items such as bags, bottles, tubs and films.

'Critical' questions over disease risks from ocean plastics
Key knowledge gaps exist in our understanding of how ocean microplastics transport bacteria and viruses -- and whether this affects the health of humans and animals, researchers say.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

Chemists make tough plastics recyclable
MIT chemists have developed a way to modify thermoset plastics with a chemical linker that makes it much easier to recycle them, but still allows them to retain their mechanical strength.

The many lifetimes of plastics
Many of us have seen informational posters at parks or aquariums specifying how long plastics bags, bottles, and other products last in the environment.

Recycling plastics together, simple and fast
Scientists successfully blended different types of plastics to be recycled together, providing a solution to the environmental problem of plastic waste and adding economic value to plastic materials.

Water replaces toxins: Green production of plastics
A new way to synthesize polymers, called hydrothermal synthesis, can be used to produce important high-performance materials in a way which is much better for the environment.

Untwisting plastics for charging internet-of-things devices
Scientists are unraveling the properties of electricity-conducting plastics so they can be used in future energy-harvesting devices.

Read More: Plastics News and Plastics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.