Nav: Home

SMU physicist explains the latest Higgs boson announcement in layman's terms

August 29, 2018

DALLAS (SMU) - Scientists conducting physics experiments at CERN's Large Hadron Collider have announced the discovery of the Higgs boson transforming, as it decays, into subatomic particles called bottom quarks, an observation that confirms that the "Standard Model" of the universe - the 20th century recipe for everything in the known physical world - is still valid.

This new discovery is a big step forward in the quest to understand how the Higgs enables fundamental particles to acquire mass. Many scientists suspect that the Higgs could interact with particles outside the Standard Model, such as dark matter - the unseen matter that does not emit or absorb light, but may make up more than 80 percent of the matter in the universe.

After several years of work experiments at both ATLAS and CMS - CERN detectors that use different types of technology to investigate a broad range of physics - have demonstrated that 60 percent of Higgs particles decay in the same way. By finding and mapping the Higgs boson interactions with known particles, scientists can simultaneously probe for new phenomena.

SMU played important roles in the analysis announced by CERN Aug. 28, including:
  • Development of the underlying analysis software framework (Stephen Sekula, SMU associate professor of physics was co-leader of the small group that included SMU graduate student Peilong Wang and post-doctoral researcher Francesco Lo Sterzo, that does this for the larger analysis for 2017-2018)

  • Studying background processes that mimic this Higgs boson decay, reducing measurement uncertainty in the final result.

"The Standard Model is the recipe for everything that surrounds us in the world today. Sekula explained. "It has been tested to ridiculous precision. People have been trying for 30-40 years to figure out where or if the Standard Model described matter incorrectly. Like any recipe you inherit from a family member, you trust but verify. This might be grandma's favorite recipe, but do you really need two sticks of butter? This finding shows that the Standard Model is still the best recipe for the Universe as we know it."

Scientists would have been intrigued if the Standard Model had not survived this test, Sekula said, because failure would have produced new knowledge.

"When we went to the moon, we didn't know we'd get Mylar and Tang," Sekula said. "What we've achieved getting to this point is we've pushed the boundaries of technology in both computing and electronics just to make this observation. Technology as we know it will continue to be revolutionized by fundamental curiosity about why the universe is the way it is.

"As for what we will get from all this experimentation, the honest answer is I don't know," Sekula said. "But based on the history of science, it's going to be amazing."
-end-
About CERN

At CERN, the European Organization for Nuclear Research, physicists and engineers are probing the fundamental structure of the universe. They use the world's largest and most complex scientific instruments to study the basic constituents of matter - the fundamental particles. The particles are made to collide together at close to the speed of light. The process gives the physicists clues about how the particles interact, and provides insights into the fundamental laws of nature. Founded in 1954, the CERN laboratory sits astride the Franco-Swiss border near Geneva.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU's alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

Southern Methodist University

Related Physics Articles:

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
When the physics say 'don't follow your nose'
Engineers at Duke University are developing a smart robotic system for sniffing out pollution hotspots and sources of toxic leaks.
The coming of age of plasma physics
The story of the generation of physicists involved in the development of a sustainable energy source, controlled fusion, using a method called magnetic confinement.
Physics: Not everything is where it seems to be
Scientists at TU Wien, the University of Innsbruck and the ÖAW have for the first time demonstrated a wave effect that can lead to measurement errors in the optical position estimation of objects.
'Fudge factors' in physics?
What if your theory to model and predict the electronic structure of atoms isn't accounting for dispersion energy?
More Physics News and Physics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.