More than just a DNA repair deficiency syndrome

August 29, 2018

Duesseldorf, 29/08/2018. The Cockayne syndrome is a very rare hereditary disease, which can lead among others to dwarfism, neurological impairment, premature aging and a shortened life span. Skin symptoms include a striking sensitivity to UV rays and a dramatic loss of subcutaneous fat. The disease is caused in 80 % of the cases by a mutation in the CSB gene. There is no curative treatment. The CSB protein is well known for its role in DNA repair and the Cockayne syndrome therefore usually described as a DNA repair deficiency syndrome. This view, however, does not explain the diverse clinical phenotype of the patients and hence, the CSB protein most likely serves important biological functions beyond DNA repair.

A study of the IUF - Leibniz Research Institute for Environmental Medicine and the Heinrich Heine University Duesseldorf (HHU), Germany, now shows for the first time that the CSB protein is not only present in the nucleus but also at the centrosome of the cell where it enhances acetylation (a certain modification) of alpha-Tubulin (a protein which forms routes of transportation in the cell) and thereby regulates autophagy (the degradation of cellular material in the cell fluid). If the protein is not able to fulfill this task, an imbalance in protein acetylation occurs. Administration of the histone deacetylase inhibitor SAHA, which inhibits a certain protein family in reversing acetylation, was able to restore this balance. Of note, the loss of subcutaneous fat, i.e. a hallmark of Cockayne syndrome B, could also be restored by SAHA in the mouse model. These results, which have been generated across several species including nematodes, mice and human skin cells, were now published in "Science Translational Medicine". Future studies will assess if the HDAC inhibitor SAHA, which is a FDA approved drug for treating certain forms of cutaneous T cell lymphoma, is also suitable for the treatment of patients with Cockayne syndrome.

"More and more biological functions beyond DNA repair are being discovered for proteins, which were originally described as DNA repair enzymes. Examples are the CSB protein but also the XPA protein which causes a very severe subtype of Xeroderma pigmentosum", says Prof. Jean Krutmann, director of the IUF. "This paradigm shift might allow us to identify new strategies for the treatment of these incurable diseases".The investigations with the nematodes were conducted by a liaison group between the IUF and the Central Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University in Duesseldorf, Germany, which is led by Dr. Natascia Ventura.
-end-
Source

Majora M, Sondenheimer K, Knechten M, Uthe I, Esser C, Schiavi A, Ventura N, Krutmann J: HDAC inhibition improves autophagic and lysosomal function to prevent loss of subcutaneous fat in a mouse model of Cockayne syndrome. Sci Transl Med 2018.

More information, including a copy of the paper, can be found online at the Science Translational Medicine press package at http://www.eurekalert.org/jrnls/scitransmed. You will need your user ID and password to access this information.

About the IUF

The IUF - Leibniz Research Institute for Environmental Medicine investigates the molecular mechanisms through which particles, radiation and environmental chemicals harm human health. The main working areas are environmentally induced aging of the cardiopulmonary system and the skin as well as disturbances of the nervous and immune system. Through development of novel model systems the IUF contributes to the improvement of risk assessment and the identification of novel strategies for the prevention / therapy of environmentally induced health damage.

More information: http://www.iuf-duesseldorf.com.

The IUF is part of the Leibniz Association: http://www.leibniz-gemeinschaft.de/en/home.

Leibniz Institute for Environmental Medicine

Related DNA Repair Articles from Brightsurf:

DNA repair supports brain cognitive development
Researchers at Osaka University showed that the enzyme PolĪ² functions in genome maintenance by preventing double-stranded breaks in DNA during brain development in mice.

DNA repair - Locating and severing lethal links
Covalent cross-links between proteins and DNA are among the most hazardous types of DNA damage.

When it comes to DNA repair, it's not one tool fits all
Researchers at UT Health San Antonio studied double-strand breaks with complex damage and found that enzyme tools to resect the breaks are highly specific to the type of break to be repaired.

First systematic report on the tug-of-war between DNA damage and repair
IBS scientists have screened almost 163,000 DNA mutations in 2,700 C. elegans roundworms to shed light on DNA damage.

DNA damage and faulty repair jointly cause mutations
By analysing genomic data from worms, scientists detailed how mutations are caused by a combination of DNA damage and inaccurate repair.

Helping a helper: Uncovering how different proteins cooperate in DNA repair
DNA is critical for life as we know it. Ensuring that DNA is kept in a stable state is therefore important in all organisms.

Better plant edits by enhancing DNA repair
A protein hijacked from a bacterial pathogen helps to facilitate more precise genome editing in plants.

Scientists reveal how proteins team up to repair DNA
Scientists have revealed an important mechanism in the repair of DNA double-strand breaks, according to new research published today in eLife.

New repair mechanism for DNA breaks
Researchers from the University of Seville and the Andalusian Centre of Molecular Biology and Regenerative Medicine (CABIMER) have identified new factors that are necessary for the repair of these breaks.

What does DNA's repair shop look like? New research identifies the tools
A team of scientists has identified how damaged DNA molecules are repaired inside the human genome, a discovery that offers new insights into how the body works to ensure its health and how it responds to diseases that stem from impaired DNA.

Read More: DNA Repair News and DNA Repair Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.