The hidden life of rock gnome lichen

August 29, 2018

NEW YORK, August 29, 2018 - They are a natural fertilizer for the forest, great construction material for birds' nests and an important indicator of how polluted the air is. And yet scientists know very little about the genetic diversity of lichens -- symbiotic life forms made up of two distinct, but interdependent organisms: fungi and algae.

A new study from researchers at The Graduate Center of The City University of New York is helping to answer some of those questions by shedding light on the genetic diversity and reproductive process of rock gnome lichen (Cetradonia linearis). It is one of only two varieties of lichens on the U.S. endangered species list and one of 14 on the International Union for the Conservation of Nature's Red List. The research appears online today in the American Journal of Botany.

There are roughly 20,000 identified lichen varieties around the globe. The Rock gnome species, however, is rare and known to exist only in the Southern Appalachian Mountains of Georgia, North Carolina, South Carolina, Tennessee, and Virginia. It populates along the sides of rocks in high-elevation areas with frequent fog or deep river gorges, but human-driven degradation of specialized habitat and an invasive tree pest have threatened the rock gnome's survival in recent decades.

"This research is the first genome-wide analysis of the rock gnome lichen, and the first population genomics study of any lichen species," said the paper's first author, Jessica Allen, who received her Ph.D. in biology from The Graduate Center -- where she also began her study. "Lichens are important to our ecosystem because they support a lot of biological activities, and they're also good indicators of air quality because where we find low levels of species diversity we tend to find high levels of lung cancer. Analyzing their genomics can help us understand how certain varieties reproduce, the amount of genetic diversity within their group, and the factors that allow them to thrive."

Methodology and Findings

For their study, researchers collected rock gnome lichen samples from 15 sites representing the diverse geographical and ecological range of its habitat. To perform the gene analysis and determine the diversity of this particular variety, they employed whole-genomics shotgun sequencing. This combination of two methods allowed researchers to efficiently sequence long DNA strands and simultaneously sequence all the DNA found in the lichen's chromosomes.

Next, researchers fed habitat, temperature, and precipitation data into an algorithm to determine the influence of geographical and environmental differences on the genetic variations found within the rock gnome lichen. Finally, researchers dissected fertile samples of the lichen to observe their reproductive structure.

The work enabled researchers to make three novel and important observations: the rock gnome lichen has become less widespread since the Last Glacial Maximum period; the genetic variations found in this variety are more a function of geography than environmental differences; and the rock gnome has a unisexual reproductive structure.


"This study ultimately shows that the rock gnome lichen is genetically distinct from one location to the next -- even when the habitats are similar," said Graduate Center biology professor Elizabeth Alter, whose lab conducted the study. "That suggests that if we destroy any of these areas through risky activities, we'll reduce the diversity and further jeopardize this lichen."

While this particular study broadens understanding of the factors shaping genetic diversity of rock gnome lichen and support continued conservation of this variety, the methodology used to identify the specie's genetic makeup and distinctive traits can be employed to gain a similar understanding of other endangered lichens.
About The Graduate Center of The City University of New York

The Graduate Center of The City University of New York (CUNY) is a leader in public graduate education devoted to enhancing the public good through pioneering research, serious learning, and reasoned debate. The Graduate Center offers ambitious students more than 40 doctoral and master's programs of the highest caliber, taught by top faculty from throughout CUNY -- the nation's largest public urban university. Through its nearly 40 centers, institutes, and initiatives, including its Advanced Science Research Center (ASRC), The Graduate Center influences public policy and discourse and shapes innovation. The Graduate Center's extensive public programs make it a home for culture and conversation.

Advanced Science Research Center, GC/CUNY

Related Genetic Diversity Articles from Brightsurf:

In the Cerrado, topography explains the genetic diversity of amphibians more than land cover
Study shows that a tree frog endemic to a mountainous region of the Brazilian savanna is unable to disperse and find genetically closer mates when the terrain is rugged, potentially endangering survival of the species

New DNA sequencing technique may help unravel genetic diversity of cancer tumors
Understanding the genetic diversity of individual cells within a cancer tumor and how that might impact the disease progression has remained a challenge, due to the current limitations of genomic sequencing.

Researchers uncover the arks of genetic diversity in terrestrial mammals
Mapping the distribution of life on Earth, from genes to species to ecosystems, is essential in informing conservation policies and protecting biodiversity.

Seahorse and pipefish study by CCNY opens window to marine genetic diversity May 08, 2020
The direction of ocean currents can determine the direction of gene flow in rafting species, but this depends on species traits that allow for rafting propensity.

Study helps arboreta, botanical gardens meet genetic diversity conservation goals
In a groundbreaking study, an international team of 21 scientists evaluated five genera spanning the plant tree of life (Hibiscus, Magnolia, Pseudophoenix, Quercus and Zamia) to understand how much genetic diversity currently exists in collections in botanical gardens and arboreta worldwide.

Study reveals rich genetic diversity of Vietnam
In a new paper, Dang Liu, Mark Stoneking and colleagues have analyzed newly generated genome-wide SNP data for the Kinh and 21 additional ethnic groups in Vietnam, encompassing all five major language families in MSEA, along with previously published data from nearby populations and ancient samples.

Coastal pollution reduces genetic diversity of corals, reef resilience
A new study by researchers at the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology found that human-induced environmental stressors have a large effect on the genetic composition of coral reef populations in Hawai'i.

New world map of fish genetic diversity
An international research team from ETH Zurich and French universities has studied genetic diversity among fish around the world for the first time.

Texas A&M study reveals domestic horse breed has third-lowest genetic diversity
A new study by Dr. Gus Cothran, professor emeritus at the Texas A&M School of Veterinary Medicine & Biomedical Sciences, has found that the Cleveland Bay horse breed has the third-lowest genetic variation level of domestic horses, ranking above only the notoriously inbred Friesian and Clydesdale breeds.

Genetic diversity facilitates cancer therapy
Cancer patients with more different HLA genes respond better to treatment.

Read More: Genetic Diversity News and Genetic Diversity Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to