Nav: Home

The 'inflammation' of opioid use

August 29, 2019

Opioid dependence has become a national crisis with serious impact on economic and social welfare, and numerous casualties. A big goal of ongoing research in combating opioid use disorder is understanding drug withdrawal. The physical and emotional symptoms of withdrawal can be life threatening and make up a powerfully negative experience; the fear of these symptoms strongly motivates addiction.

Researchers in the lab of James Schwaber at the Daniel Baugh Institute for Functional Genomics and Computational Biology at Thomas Jefferson University are studying how inflammation contributes to drug withdrawal and dependence. Their study was published in Frontiers of Neuroscience on July 3.

Opioids can cause inflammation in the brain by inducing immune cells to release inflammatory molecules called cytokines. The main immune cells in the brain are microglia and astrocytes. Inflammatory responses induced by opioids have been observed in the central amygdala, a brain region that has been strongly implicated in opioid dependence because of its role in emotion and motivation. The central amygdala can also be affected by inflammation in other parts of the body, like the gut. In fact, the communication between the gut and the brain can shape a variety of motivated behaviors and emotional states, including those associated with drug dependence and withdrawal.

The researchers including first author Sean O'Sullivan in Dr. Schwaber's lab isolated single neurons, microglia, and astrocytes from the central amygdala and studied their genetic profiles in normal, opioid-dependent, and withdrawn rats. They were surprised to find that the profile of astrocytes changed the most, shifting genetic expression to a more activated state. This shift correlated strongly with opioid withdrawal. Furthermore, all three cell types showed a considerable increase in an inflammatory cytokine called TNF alpha in withdrawn animals.

In addition, the researchers also assayed different types of bacteria in the gut of rats and found that certain anti-inflammatory bacteria were suppressed in withdrawn animals, shifting the ratio of gut microbiota and causing a phenomenon called dysbiosis, which can cause inflammation in the digestive system. It is unclear how these changes influence opioid withdrawal, but the authors propose that the simultaneous inflammation in the gut and central amygdala may be linked to the negative emotional experience of withdrawal.

The findings underscore the highly complex relationship between the gut and the brain, and suggest that inflammation in the gut and brain may exacerbate symptoms associated with withdrawal. Targeting inflammation in these regions may alleviate the negative experience of drug withdrawal, and therefore prevent dependence.
-end-
The study was funded by NIH HLB U01 HL133360, NIDA R21 DA036372 and T32 AA-007463. The authors report no conflict of interest.

Article Referenc: Sean J. O'Sullivan, Evangelia Malahias, James Park, Ankita Srivastava, Beverly A. S. Reyes, Jon Gorky, Rajanikanth Vadigepalli, Elisabeth J. Van Bockstaele and James S. Schwaber, Frontiers of Neuroscience, DOI: https://www.frontiersin.org/articles/10.3389/fnins.2019.00665/full">10.3389/fnins.2019.00665, 2019.

Media Contact: Edyta Zielinska, 215-955-7359, edyta.zielinska@jefferson.edu">edyta.zielinska@jefferson.edu; Karuna Meda, 267-624-4792, karuna.meda@jefferson.edu">karuna.meda@jefferson.edu.

Thomas Jefferson University

Related Brain Articles:

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.