A protective factor against Alzheimer's disease?

August 29, 2019

Researchers at the German Center for Neurodegenerative Diseases (DZNE) and the Institute for Stroke and Dementia Research (ISD) at the University Hospital of the Ludwig-Maximilians-Universität (LMU) in Munich have found that a protein called TREM2 could positively influence the course of Alzheimer's disease. When TREM2 is present in the cerebrospinal fluid at higher concentrations, patients at any stage of the disease have a better prognosis. This observation provides a starting point for the development of new therapeutic strategies. The study was led by Prof. Christian Haass (DZNE) and Prof. Michael Ewers (ISD, LMU) and is published in the journal "Science Translational Medicine".

In the brain, TREM2 is exclusively produced by microglia, the immune cells of the brain. These cells patrol the brain and clear it from cellular waste products and debris to keep it healthy. In previous studies on mice, Haass and his colleagues demonstrated that TREM2 activates microglia to enclose and selectively destroy toxic protein aggregates typical for Alzheimer's disease. "These observations indicate that TREM2 can protect the brain from the degenerative effects of the disease - at least in animal models," said Haass.

But what about patients with Alzheimer's disease? Does TREM2 protect the human brain as well? To answer these questions, Haass, Ewers, and their colleagues correlated the concentration of TREM2 in the cerebrospinal fluid of Alzheimer patients with their respective disease progression over several years. To this end, they used data of 385 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a large clinical dataset containing records and samples from patients and healthy seniors taken at regular checkups over many years. The study thus allows to establish associations between certain biochemical changes and disease progression.

Indeed, Haass and Ewers found that high levels of TREM2 improved the prognosis of subjects at all stages of the disease. Their memory remained more stable and the degradation of the hippocampus, a brain region responsible for learning and recollection, was less pronounced. "Our findings are clinically relevant because we found that higher levels of TREM2 were associated also with a reduced rate of the development of full blown dementia over a time period up to 11 years", explained Ewers. "Microglia activation is a double-edged sword, entailing both protective effects and neurotoxic inflammation. TREM2 signaling may play a key role in the regulation of the brain's protective immune response".

The concentration of TREM2 in the cerebrospinal fluid usually increases at early stages of the disease, when the first symptoms appear. "TREM2 production is a response to brain damage that has already occurred," said Haass. "It stimulates the microglia to protect the brain. However, this protection does not seem to be sufficient in patients with Alzheimer's disease". This is where Haass and his colleagues see an option for new therapeutic strategies. "We are currently developing a therapeutic antibody that stimulates the TREM2 function and thus improves its protective function," said Haass.
-end-
Original publication

Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer's disease; Michael Ewers, Nicolai Franzmeier, Marc Suarez-Calvet et al.; Science Translational Medicine (2019)

DZNE - German Center for Neurodegenerative Diseases

Related Neurodegenerative Diseases Articles from Brightsurf:

Bringing drugs to the brain with nanoparticles to treat neurodegenerative diseases
Researchers from the Institut national de la recherche scientifique (INRS) have shown that nanoparticles could be used to deliver drugs to the brain to treat neurodegenerative diseases.

First 'pathoconnectome' could point toward new treatments for neurodegenerative diseases
Scientists from the John A. Moran Eye Center at the University of Utah have achieved another first in the field of connectomics, which studies the synaptic connections between neurons.

Unlocking the mystery of tau for treatment of neurodegenerative diseases
A team of researchers from various collaborating universities and hospitals in Japan has uncovered crucial molecular details regarding the activity of the ''tau'' protein, promising to revolutionize the therapy of tau-induced neurodegenerative diseases.

Investigational drug stops toxic proteins tied to neurodegenerative diseases
An investigational drug that targets an instigator of the TDP-43 protein, a well-known hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), may reduce the protein's buildup and neurological decline associated with these disorders, suggests a pre-clinical study from researchers at Penn Medicine and Mayo Clinic.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases

New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.

Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.

Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.

Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.

Read More: Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.