Nav: Home

Marathoners, take your marks...and fluid and salt!

August 29, 2019

Legend states that after the Greek army defeated the invading Persian forces near the city of Marathon in 490 B.C.E., the courier Pheidippides ran to Athens to report the victory and then immediately dropped dead. The story -- and the distance Pheidippides covered -- inspired the modern marathon, a grueling 26.2-mile contest that attracts some 1.3 million runners annually to compete in the more than 800 races held worldwide.

While Pheidippides' demise was more likely brought about by a 300-mile run he reportedly made just prior to his "marathon," today's long-distance runners face a mostly short-term but still serious physical threat known as acute kidney injury, or AKI. Now, results of a new studyof marathon runners led by researchers at Johns Hopkins Medicine and Yale University suggest that sweat (fluid) volume and sweat sodium losses, rather than a rise in core body temperature, are the key contributors to post-race AKI.

"We knew from a previous study that a large number of marathoners developed short-term AKI following a race, so we wanted more specifically to pin down the causes," says Chirag Parikh, Ph.D., director of the Division of Nephrology at the Johns Hopkins University School of Medicine and senior author of the new paper. "Our findings suggest that managing fluid volume and salt losses with a personalized regimen during the time period surrounding a marathon may help reduce the number or lessen the severity of AKI incidences afterward."

The researchers say they also found that runners with AKI following a marathon had increased levels of a blood serum protein known as copeptin. If the connection is confirmed with future studies, they say, copeptin could be valuable as a biomarker during training for predicting post-marathon susceptibility to AKI.

AKI, as described by the National Kidney Foundation, is a "sudden episode of kidney failure or kidney damage that happens within a few hours or a few days." It causes waste products to build up in the blood, making it hard for kidneys to maintain the correct balance of fluids in the body. Symptoms of AKI differ depending on the cause and may include: too little urine leaving the body; swelling in legs, ankles and around the eyes; fatigue; shortness of breath; confusion; nausea; chest pain; and in severe cases, seizures or coma. The disorder is most commonly seen in hospitalized patients whose kidneys are affected by medical and surgical stress and complications.

Similarly, a marathon subjects a runner to sustained physical stress, reduced blood flow to the kidneys and significant increases in the metabolic rate. Together, these events severely challenge the body's ability to keep fluid volume, electrolytes and temperature levels -- along with the regulatory responses to changes in all three -- in balance. The result, as seen in 82% of the runners evaluated by the same researchers in a 2017 Yale University study, was AKI that averaged two days in duration.

For the latest study, the goal was to better define the risk factors and mechanism for the problem by examining 23 runners, ages 22-63, who competed in the 2017 Hartford Marathon in Connecticut.

Participants were volunteers recruited through local running clubs and the marathon's registration process. Divided nearly equally between men and women, they were all experienced runners with a body mass index ranging between 18.5-24.9, and had completed at least four races longer than 20 kilometers (12.4 miles) within the previous three years.

Urine and blood samples were collected from the participants at three time points: 24 hours prior to the marathon, within 30 minutes of completing the race and 24 hours after. The researchers evaluated the samples for sodium levels; key biomolecules such as creatine phosphokinase, hemoglobin, urine protein and copeptin; and biomarkers associated with kidney injury such as interleukin-18 and kidney injury molecule-1.

Sweat collection patches were placed on the runners prior to the marathon and recovered at the 5-mile mark (because they became too saturated further in the race). Blood pressure, heart rate and weight were measured at all three time points, while a bioharness worn during the marathon continually recorded body temperature.

Twelve of the 23 runners (55%) developed AKI after the race, while 17 (74%) tested positive for markers indicating some injury to the renal tubules, the tiny portals in the kidneys where blood is filtered.

In the runners with post-race AKI, the researchers observed distinct sodium and fluid volume losses. The median salt loss was 2.3 grams, with some losing as much as 7 grams.

Fluid volume loss via sweat had a midpoint level of 2.5 liters (5.2 pints), up to a maximum of 6.8 liters (14.4 pints). For comparison, a 155-pound (70-kilogram) body contains about 42 liters (85 pints) of fluid.

Core body temperature, while significantly elevated throughout a marathon, was basically the same for all runners and therefore, was not considered a causal factor for AKI. However, the researchers say that the combination of high-body temperature along with fluid and salt losses may add to the development of kidney injury.

"Putting the sodium and fluid volume loss numbers into perspective, the median salt loss for the AKI runners was about 1 1/4 teaspoons, or the entire daily amount recommended by the American Heart Association," Parikh says. "Their median fluid volume loss was equivalent to sweating out slightly more than a 2-liter soda bottle. Beyond that, we had evidence that runners weren't adequately keeping up with those depletions."

In turn, Parikh says, that failure to balance the sodium and fluid losses during a marathon may account for the new study's other relevant finding: the higher levels of copeptin seen in runners with post-race AKI.

Copeptin is a precursor to the release of vasopressin, a hormone secreted by the pituitary gland in response to reduced blood volume. It tells our kidneys and blood vessels to hold on to water, preventing a sudden drop in blood pressure and physical collapse.

"In the runners who developed AKI, we found copeptin levels as much as 20 times higher than those who did not," Parikh says. "This is biological evidence that the AKI sufferers were severely volume down."

Because vasopressin reduces blood flow to the kidneys, and decreases renal filtration and urine output, he adds, it also may induce inflammation and injury to the kidney tissues if secreted for an extended period of time. This may explain why a large number of marathon runners get AKI while those competing at shorter distances do not.

Parikh says future studies, using larger samples, will need to evaluate whether optimizing fluid and salt volumes in marathon runners lowers rates or reduces the severity of post-race AKI. Additionally, he says, the researchers would like to follow runners who participate in multiple marathons to look for any cumulative kidney damage.

"The long-term goal will be to document an individual runner's metabolic and sweat profile to develop a fluid and salt replacement regimen just for him or her," he says. "Then, runners could consume this personalized drink during the race to better maintain fluid and salt balance."
-end-
Including Parikh, the other members of the research team are Wassim Obeid, Ph.D., and Yaqi Jia, Ph.D., from the Johns Hopkins University School of Medicine; lead author Sherry Mansour, D.O., Lidiya Kukova, Ph.D., and Joe El-khoury, Ph.D., from the Yale School of Medicine; Thomas Martin, Ph.D., Rachel Pata, M.P.T., D.P.T., and Karen Myrick, M.S., D.N.P., from Quinnipiac University; and Petter Bjornstad, M.D., from the University of Colorado School of Medicine.

The study was supported by the Quinnipiac University Faculty Scholarship Grant, and received funding from the K24DK090203 grant from the National Institute of Diabetes and Digestive and Kidney Diseases, the P30-DK-079310-07 grant from the O'Brien Kidney Center, the T32DK007276 grant from the National Institutes of Health and the 18CDA34110151 grant from the American Heart Association.

Johns Hopkins Medicine

Related Blood Pressure Articles:

Here's something that will raise your blood pressure
The apelin receptor (APJ) has been presumed to play an important role in the contraction of blood vessels involved in blood pressure regulation.
New strategy for treating high blood pressure
The key to treating blood pressure might lie in people who are 'resistant' to developing high blood pressure even when they eat high salt diets, shows new research published today in Experimental Physiology.
Arm cuff blood pressure measurements may fall short for predicting heart disease risk in some people with resistant high blood pressure
A measurement of central blood pressure in people with difficult-to-treat high blood pressure could help reduce risk of heart disease better than traditional arm cuff readings for some patients, according to preliminary research presented at the American Heart Association's Hypertension 2019 Scientific Sessions.
Heating pads may lower blood pressure in people with high blood pressure when lying down
In people with supine hypertension due to autonomic failure, a condition that increases blood pressure when lying down, overnight heat therapy significantly decreased systolic blood pressure compared to a placebo.
The Lancet Neurology: High blood pressure and rising blood pressure between ages 36-53 are associated with smaller brain volume and white matter lesions in later years
A study of the world's oldest, continuously-studied birth cohort tracked blood pressure from early adulthood through to late life and explored its influence on brain pathologies detected using brain scanning in their early 70s.
Blood pressure control is beneficial, is it not?
Until recently, physicians had generally assumed that older adults benefit from keeping their blood pressure below 140/90 mmHg.
The 'blue' in blueberries can help lower blood pressure
A new study published in the Journal of Gerontology Series A has found that eating 200g of blueberries every day for a month can lead to an improvement in blood vessel function and a decrease in systolic blood pressure in healthy people.
How to classify high blood pressure in pregnancy?
The American Heart Association (AHA) and the American College of Cardiology (ACC) changed their guidance to lower the threshold criteria for hypertension in adults.
Discovery could advance blood pressure treatments
A team of Vanderbilt University Medical Center researchers, working with the US Department of Veteran's Affairs (VA), has discovered genetic associations with blood pressure that could guide future treatments for patients with hypertension.
Blue light can reduce blood pressure
Exposure to blue light decreases blood pressure, reducing the risk of developing cardiovascular disease, a new study from the University of Surrey and Heinrich Heine University Dusseldorf in collaboration with Philips reports.

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.