Nav: Home

Deep-sea sediments reveal solar system chaos: An advance in dating geologic archives

August 29, 2019

A day is the time for Earth to make one complete rotation on its axis, a year is the time for Earth to make one revolution around the Sun -- reminders that basic units of time and periods on Earth are intimately linked to our planet's motion in space relative to the Sun. In fact, we mostly live our lives to the rhythm of these astronomical cycles.

The same goes for climate cycles. The cycles in daily and annual sunlight cause the familiar diel swings in temperature and the seasons. On geologic time scales (thousands to millions of years), variations in Earth's orbit are the pacemaker of the ice ages (so-called Milankovi? cycles). Changes in orbital parameters include eccentricity (the deviation from a perfect circular orbit), which can be identified in geological archives, just like a fingerprint.

The dating of geologic archives has been revolutionized by the development of a so-called astronomical time scale, a "calendar" of the past providing ages of geologic periods based on astronomy. For example, cycles in mineralogy or chemistry of geologic archives can be matched to cycles of an astronomical solution (calculated astronomical parameters in the past from computing the planetary orbits backward in time). The astronomical solution has a built-in clock and so provides an accurate chronology for the geologic record.

However, geologists and astronomers have struggled to extend the astronomical time scale further back than about fifty million years due to a major roadblock: solar system chaos, which makes the system unpredictable beyond a certain point.

In a new study published in the journal Science, Richard Zeebe from the University of Hawai'i at Manoa and Lucas Lourens from Utrecht University now offer a way to overcome the roadblock. The team used geologic records from deep-sea drill cores to constrain the astronomical solution and, in turn, used the astronomical solution to extend the astronomical time scale by about 8 million years. Further application of their new method promises to reach further back in time still, one step and geologic record at a time.

On the one hand, Zeebe and Lourens analyzed sediment data from drill cores in the South Atlantic Ocean across the late Paleocene and early Eocene, ca. 58-53 million years ago (Ma). The sediment cycles displayed a remarkable expression of one particular Milankovi? parameter, Earth's orbital eccentricity. On the other hand, Zeebe and Lourens computed a new astronomical solution (dubbed ZB18a), which showed exceptional agreement with the data from the South Atlantic drill core.

"This was truly stunning," Zeebe said. "We had this one curve based on data from over 50-million-year-old sediment drilled from the ocean floor and then the other curve entirely based on physics and numerical integration of the solar system. So the two curves were derived entirely independently, yet they looked almost like identical twins."

Zeebe and Lourens are not the first to discover such agreement -- the breakthrough is that their time window is older than 50 Ma, where astronomical solutions disagree. They tested 18 different published solutions but ZB18a gives the best match with the data.

The implications of their work reach much further. Using their new chronology, they provide a new age for the Paleocene-Eocene boundary (56.01 Ma) with a small margin of error (0.1%). They also show that the onset of a large ancient climate event, the Paleocene-Eocene Thermal Maximum (PETM), occurred near an eccentricity maximum, which suggests an orbital trigger for the event. The PETM is considered the best paleo-analog for the present and future anthropogenic carbon release, yet the PETM's trigger has been widely debated. The orbital configurations then and now are very different though, suggesting that impacts from orbital parameters in the future will likely be smaller than 56 million years ago.

Zeebe cautioned, however, "None of this will directly mitigate future warming, so there is no reason to downplay anthropogenic carbon emissions and climate change."

Regarding implications for astronomy, the new study shows unmistakable fingerprints of solar system chaos around 50 Ma. The team found a change in frequencies related to Earth's and Mars' orbits, affecting their amplitude modulation (often called a "beat" in music).

"You can hear amplitude modulation when tuning a guitar. When two notes are nearly the same, you essentially hear one frequency, but the amplitude varies slowly -- that's a beat," Zeebe explained. In non-chaotic systems, the frequencies and beats are constant over time, but they can change and switch in chaotic systems (called resonance transition). Zeebe added, "The change in beats is a clear expression of chaos, which makes the system fascinating but also more complex. Ironically, the change in beats is also precisely what helps us to identify the solution and extend the astronomical time scale".
-end-


University of Hawaii at Manoa

Related Solar System Articles:

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.
A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.
Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.
Does the organic material of comets predate our solar system?
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet 'Chury.' In an article published by MNRAS on Aug.
Tracking a solar eruption through the solar system
Ten spacecraft, from ESA's Venus Express to NASA's Voyager-2, felt the effect of a solar eruption as it washed through the solar system while three other satellites watched, providing a unique perspective on this space weather event.
More Solar System News and Solar System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.