Nav: Home

Overcome the bottleneck of solid electrolytes for Li batteries

August 29, 2019

On Aug 21st, Prof. MA Cheng from the University of Science and Technology of China (USTC) and his collaborators proposed an effective strategy to address the electrode-electrolyte contact issue that is limiting the development of next-generation solid-state Li batteries. The solid-solid composite electrode created this way exhibited exceptional capacities and rate performances.

Replacing the organic liquid electrolyte in conventional Li-ion batteries with solid electrolytes can greatly alleviate the safety issues, and potentially break the "glass ceiling" for energy density improvement. However, mainstream electrode materials are also solids. Since the contact between two solids is nearly impossible to be as intimate as that between solid and liquid, at present the batteries based on solid electrolytes typically exhibit poor electrode-electrolyte contact and unsatisfactory full-cell performances.

"The electrode-electrolyte contact issue of solid-state batteries is somewhat like the shortest stave of a wooden barrel," said Prof. MA Cheng from USTC, the lead author of the study. "Actually, over these years researchers have already developed many excellent electrodes and solid electrolytes, but the poor contact between them is still limiting the efficiency of Li-ion transport."

Fortunately, MA's strategy may overcome this formidable challenge. The study began with the atom-by-atom examination of an impurity phase in a prototype, perovskite-structured solid electrolyte. Although the crystal structure differed greatly between the impurity and the solid electrolyte, they were observed to form epitaxial interfaces. After a series of detailed structural and chemical analyses, researchers discovered that the impurity phase is isostructural with the high-capacity Li-rich layered electrodes. That is to say, a prototype solid electrolyte can crystallize on the "template" formed by the atomic framework of a high-performance electrode, resulting in atomically intimate interfaces.

"This is truly a surprise," said the first author LI Fuzhen, who is currently a graduate student of USTC. "The presence of impurities in the material is actually a very common phenomenon, so common that most of the time they will be ignored. However, after taking a close look at them, we discovered this unexpected epitaxial behavior, and it directly inspired our strategy for improving the solid-solid contact."

Taking advantage of the observed phenomenon, the researchers intentionally crystallized the amorphous powder with the same composition as the perovskite-structured solid electrolyte on the surface of a Li-rich layered compound, and successfully realized a thorough, seamless contact between these two solid materials in a composite electrode. With the electrode-electrolyte contact issue addressed, such a solid-solid composite electrode delivered a rate capability even comparable to that from a solid-liquid composite electrode. More importantly, the researchers also found this type of epitaxial solid-solid contact may tolerate large lattice mismatches, and thus the strategy they proposed could also be applicable to many other perovskite solid electrolytes and layered electrodes.

"This work pointed out a direction that is worth pursuing," MA said. "Applying the principle raised here to other important materials could lead to even better cell performances and more interesting science. We are looking forward to it."

The researchers intend to continue their exploration in this direction, and apply the proposed strategy to other high-capacity, high-potential cathodes.
The study was published on Matter, a flagship journal of Cell Press, entitled "Atomically Intimate Contact between Solid Electrolytes and Electrodes for Li Batteries". The first author is LI Fuzhen, a graduate student of USTC. Prof. MA Cheng's collaborators include Prof. NAN Ce-Wen from Tsinghua University and Dr. ZHOU Lin from Ames Laboratory.

University of Science and Technology of China

Related Electrode Articles:

New polysomnography electrode set enables easy at-home assessment of sleep bruxism
An easy-to-use electrode set can assess sleep bruxism severity as well as a conventional polysomnography, a new study from the University of Eastern Finland shows.
Electrode-fitted microscope points to better designed devices that make fuel from sunlight
Using an atomic-force microscope fitted with an electrode tip 1,000 times smaller than a human hair, University of Oregon researchers have identified in real time how nanoscale catalysts collect charges that are excited by light in semiconductors.
Using high energy density material in electrode design enhances lithium sulfur batteries
To develop higher capacity batteries, researchers have looked to lithium sulfur batteries because of sulfur's high theoretical capacity and energy density.
Overcome the bottleneck of solid electrolytes for Li batteries
On Aug 21st, Prof. MA Cheng from the University of Science and Technology of China (USTC) and his collaborators proposed an effective strategy to address the electrode-electrolyte contact issue that is limiting the development of next-generation solid-state Li batteries.
Single-electrode material streamlines functions into a tiny chip
Ruthenium oxide is used to integrate energy-storing microsupercapacitors and thin-film electronics at the transistor level.
Development of 3D particle model for single particles in battery electrodes
DGIST Professor Yong Min Lee's team in the Department of Energy Science and Engineering succeeded in developing an electrochemical model that can predict and analyze the electrochemical phenomena of the single particles of electrode active materials.
What causes battery electrode failure?
'It's impossible to have every single grain of rice identical in terms of their shapes and how far away it is to its neighbor,' Lin said.
Applying precious metal catalysts economically
Researchers have developed a new method of using rare and expensive catalysts as sparingly as possible.
Electrode's 'hot edges' convert CO2 gas into fuels and chemicals
A team of scientists has created a bowl-shaped electrode with 'hot edges' which can efficiently convert CO2 from gas into carbon based fuels and chemicals, helping combat the climate change threat posed by atmospheric carbon dioxide.
Bacteria could become a future source of electricity
In recent years, researchers have tried to capture the electrical current that bacteria generate through their own metabolism.
More Electrode News and Electrode Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at