Variation in 'junk' DNA leads to trouble

August 30, 2016

DURHAM, N.C. -- All humans are 99.9 percent identical, genetically speaking. But that tiny 0.1 percent variation has big consequences, influencing the color of your eyes, the span of your hips, your risk of getting sick and in some ways even your earning potential.

Although variants are scattered throughout the genome, scientists have largely ignored the stretches of repetitive genetic code once dismissively known as "junk" DNA in their search for differences that influence human health and disease.

A new study shows that variation in these overlooked repetitive regions may also affect human health. These regions can affect the stability of the genome and the proper function of the chromosomes that package genetic material, leading to an increased risk of cancer, birth defects and infertility. The results appear online in the journal Genome Research.

"Variation is not only important for how genes and proteins function, but it can also occur in the noncoding, repetitive portions of the genome," said Beth A. Sullivan, Ph.D., senior author of the study and associate professor of molecular biology and microbiology at Duke University School of Medicine.

"What we found in this study is probably the tip of the iceberg," Sullivan said. "There could be all sorts of functional consequences to having variation within the complex, repetitive portion of the genome that we don't know about yet."

Even though the sequence of the human genome was declared complete more than a decade ago, it retains several glaring gaps, especially in the repetitive sequences around centromeres, the twisty ties that hold a pair of chromosomes together in a floppy X shape and coordinate their movement during cell division.

These centromere sequences -- called satellite DNA -- are made up of blocks of exactly 171 A's, C's, T's and G's, repeated over and over for millions of base-pairs. Researchers once believed that each chromosome contained a single stretch of this satellite DNA, which determined where its centromere would reside. But a few years ago, Sullivan's lab discovered that many human chromosomes possessed more than one of these regions, and depending on the individual, the centromere could form at either site.

In this study, Sullivan wanted to see how the chromosome decides where to put its centromere, and whether one site builds a "better" centromere than the other. Of the 23 pairs of human chromosomes, she focused on chromosome 17, which is structurally rearranged or mutated in many different cancers and birth defects.

First, Sullivan and her team combined molecular and visual assays, stretching the chromosome out into long chromatin fibers that were painted with fluorescent probes to map the variation in genomic sequence at the two different regions of satellite DNA. Then they looked at each satellite region for the presence of proteins necessary to construct a fully functioning centromere.

The researchers found that genomic variation at one of these satellite DNA regions -- either in the size or sequence of its repeated 171 base pair units -- ultimately determines whether the centromere is built at the primary site or the alternate site.

When they interrogated samples from a human DNA bank, they found that about 70 percent of humans have little genomic variation at the primary site, while 30 percent have differing degrees of variation. Most of the time, the centromeres aren't built at the primary site if it contains variation and instead are assembled at the "backup" site nearby. But when this happens, the result may be a dysfunctional centromere that is architecturally unsound and an unstable chromosome that may be present in too many or too few copies.

"It is immensely fascinating to think that there are so many people walking around who are essentially centromere mosaics," said Sullivan. "One of their centromeres, on one of their chromosomes, has the potential to be dangerously unstable, and it could affect their ability to reproduce, or predispose them to cancer."

In the future, Sullivan plans to investigate just how big of a risk the variant satellite regions pose for those who carry them, and possibly develop a way to use these sequences as biomarkers for the chromosomal defects that can lead to disease.
-end-
The research was supported in part by grants from the March of Dimes (#1-FY13-517) and National Institutes of Health (1R01-GM98500-01A1).

CITATION: "Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles," Megan E. Aldrup-MacDonald, Molly E. Kuo, Lori L. Sullivan, Kimberline Chew, and Beth A. Sullivan. Genome Research, Online Aug. 10, 2016. DOI: 10.1101/gr.206706.116

Duke University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.