A new animal model to understand metastasis in sarcomas

August 30, 2016

The Sarcoma research group of Bellvitge Biomedical Research Institute (IDIBELL), led by Dr. Òscar Martínez-Tirado, has developed a modified version of an orthotopic model that allows researchers to recreate more closely the metastatic steps in Ewing sarcoma (ES), the second most common bone tumor in children and adolescents. This new model has been used for the first time as part of the team's latest work, published in Oncotarget, which provides new insights into metastatic processes in ES, and may become a valuable experimental tool to analyze metastatic potential in different kinds of sarcomas.

"We believe that this orthotopic model recapitulates more closely the metastatic steps in ES as the primary tumor grows in its natural environment" explains Dr Martínez-Tirado. Orthotopic models are based on the implantation of tumor cells directly into the organ of origin, which allows interaction between these cells and the surrounding host tissues. In this case, ES cells were injected into the calf muscles of the mouse, and once the tumor reached a certain volume, the muscles were surgically resected. "This procedure involves a low-aggressive surgery that allows the survival of the mice with a normal mouse life for a period long enough for the development of distant metastases", says the researcher.

Orthotopic models are considered more clinically relevant and better predictive models, as it has been shown that the interaction of tumor cells with its natural environment affects their growth, differentiation, and drug sensitivity. Moreover, injected tumor cells can spread to metastatic sites in other organs, with specificities comparable to the human situation. "Thanks to this approach, we were able to identify how the CAV1 protein regulates a pro-metastatic pathway in ES and the role of the RPS6 and RSK1 proteins as key nodes of this process. ES patients could potentially benefit from these findings."

Ewing sarcoma (ES) is a bone and soft tissue sarcoma affecting mostly children and young adults. It is very aggressive and highly metastatic; approximately, one third of ES patients present metastasis at diagnosis, being lung and bone marrow the most common sites. "The treatment and prognosis of patients are determined among other factors by the presence of these metastases. Therefore, a full comprehensive understanding of ES metastatic process is mandatory to develop novel therapeutic strategies. That is why this in vivo orthotopic animal model may be an extremely useful asset to study metastases not only in ES but in other sarcomas too" Martínez-Tirado concludes.

IDIBELL-Bellvitge Biomedical Research Institute

Related Tumor Cells Articles from Brightsurf:

A more sensitive way to detect circulating tumor cells
Breast cancer is the most frequently diagnosed cancer in women, and metastasis from the breast to other areas of the body is the leading cause of death in these patients.

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

How to prevent the spread of tumor cells via the lymph vessels
Scientists from the German Cancer Research Center and the Mannheim Medical Faculty of the University of Heidelberg identified a new way to block the dangerous spread of tumor cells via lymphatic vessels.

The CNIO reprograms CRISPR system in mice to eliminate tumor cells without affecting healthy cells
CNIO researchers destroyed Ewing's sarcoma and chronic myeloid leukaemia tumor cells by using CRISPR to cut out the fusion genes that cause them.

Feeding off fusion or the immortalization of tumor cells
Despite all recent progress, cancer remains one of the deadliest human diseases.

How do tumor cells divide in the crowd?
Scientists led by Dr. Elisabeth Fischer-Friedrich, group leader at the Excellence Cluster Physics of Life (PoL) and the Biotechnology Center TU Dresden (BIOTEC) studied how cancer cells are able to divide in a crowded tumor tissue and connected it to the hallmark of cancer progression and metastasis, the epithelial-mesenchymal transition (EMT).

How tumor cells evade the immune defense
Scientists are increasingly trying to use the body's own immune system to fight cancer.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

New pathway to attack tumor cells identified
A study led by the Institut de Neurociències (INc-UAB) describes a new strategy to tackle cancer, based on inducing a potent stress in tumor causing cell destruction by autophagy.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Read More: Tumor Cells News and Tumor Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.