Nav: Home

Microbubbles show whether radiotherapy is reaching its target

August 30, 2016

An interdisciplinary team of researchers at KU Leuven (University of Leuven), Belgium, have developed a new way to evaluate whether a cancer radiation treatment is effective. Their technique uses gas-filled microbubbles and ultrasonic sound waves to determine whether the radiation beams have reached the target area. This makes it easier to limit or avoid damage to healthy tissue.

Radiotherapy is often used to treat cancer. A downside of the treatment is that the radiation beams damage healthy tissue as well. Various complex systems and methods already exist to target the tumour with as much precision as possible, but there is no remote method to check inside the body - in situ - whether the radiation beams have actually reached their target.

Professor Koen Van Den Abeele and his colleagues have now found a way to change that. Their new technique combines gas-filled microbubbles and sound waves to determine whether the radiotherapy has reached the targeted area. The microbubbles are about the size of a red blood cell and are injected into the bloodstream. Once inside the body, they bind to the tumour. Exposure to radiation makes the microbubbles stiffer. This local change in stiffness is what the researchers detect with ultrasonic sound waves.

Professor Van Den Abeele from the Department of Physics and Astronomy at KU Leuven Campus Kulak Kortrijk explains: "We send ultrasonic sound waves to the gas-filled microbubbles, which makes them vibrate at their natural frequency. We then measure the vibration of the microbubbles before and after the radiotherapy. If the radiation has reached the targeted area, the microbubbles will have become stiffer and thus vibrate at a higher frequency. The change in frequency and attenuation is a measure of the radiation dose."

Oncologists currently have to rely on computer simulations or measuring devices inside a tissue-like phantom or outside the body to check whether the radiotherapy will reach the right area in the right dose. The new measuring technique provides more accurate information based on the actual tumour and the surrounding tissue to help decide whether or not the treatment has to be adjusted.

Microbubbles are already being used as contrast agents for ultrasound-based medical imaging of tissue, organs, and bloodstreams for drug delivery and for gene transfer. This new technique is the first to use microbubbles for dosimetry in the fight against cancer.

The technique has already been tested in vitro and in mice. Further research is necessary before the technique can be translated to human beings as well.
-end-
This research was conducted in collaboration with Professor Jan D'hooge (KU Leuven), Professor Karin Haustermans (KU Leuven and University Hospitals Leuven - Leuven Cancer Institute), Dr Helge Pfeiffer (KU Leuven), and Dr Emiliano D'Agostino (SCK* CEN and DoseVue NV).

Patent protection has already been established in Europe and the US ("Non-Invasive In-Situ Radiation Dosimetry", publication numbers US 9,035,268 and EP2758130).

KU Leuven

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...