Amputees' brains remember missing hands even years later

August 30, 2016

Our brains have a detailed picture of our hands and fingers, and that persists even decades after an amputation, Oxford University researchers have found. The finding could have implications for the control of next generation prosthetics.

Team leader, Dr. Tamar Makin said: 'It has been thought that the hand 'picture' in the brain, located in the primary somatosensory cortex, could only be maintained by regular sensory input from the hand. In fact, textbooks teach that the 'picture' will be 'overwritten' if its primary input stops. If that was the case, people who have undergone hand amputation would show extremely low or no activity related to its original focus in that brain area- in our case, the hand. However, we also know that people experience phantom sensations from amputated body parts, to the extent that someone asked to move a finger can 'feel' that movement.

'We wanted to look at the information underlying brain activity in phantom movements, to see how it varied from the brain activity of people moving actual hands and fingers.'

The team, from Oxford's Hand and Brain Lab, used an ultra-high power (7T) MRI scanner to look at brain activity in two people who had lost their left hand through amputation 25 and 31 years ago but who still experienced vivid phantom sensations, and eleven people who retained both hands and were right handed. Each person was asked to move individual fingers on their left hand.

Study leader, Ms. Sanne Kikkert said: 'We found that while there was less brain activity related to the left hand in the amputees, the specific patterns making up the composition of the hand picture still matched well to the two-handed people in the control group.'

'We confirmed our findings by working with a third amputee, who had also experienced a loss of any communication between the remaining part of their arm and their brain. Even this person had a residual representation of their missing hand's fingers, 31 years after their amputation.'

One of those involved in the study was Chris Sole. Chris, whose hand was amputated in 1989, has taken part in a number of studies and was chosen for this study specifically because of the strong sense of movement in his amputated hand that he still experiences. He explained: 'You feel like you can move your fingers and you have individual control.

'I am always happy to take part in this team's studies. Especially if it can help other people, the more they can learn the better.'

The current study provides a new opportunity to unlock one of the most mysterious questions about the brain's ability to adaptively change to new circumstances - what happens to the brain once a key input is lost? To answer this question, scientists so far resorted to studying representations of the remaining (unaffected) inputs to see if these have changed. This approach leaves unexplored the possibility that the original function of the brain may be preserved, though latent. By studying phantom sensations in amputees these findings overturn established thinking in neuroscience by showing the brain maintains activity despite a drastic change in inputs.

Although these findings provide new insight about the brain's ability to change, they are compatible with other studies of the brain's visual cortex that found that degenerative eye disease limiting visual input did not change the brain's representation of the visual field.

Sanne Kikkert said: 'It seems that even, as previously thought, the brain does carry out reorganisation when sensory inputs are lost, it does not erase the original function of a brain area.'

'This would remove a barrier to neuroprosthetics - prosthetic limbs controlled directly by the brain - the assumption that a person would lose the brain area that could control the prosthetic. If the brain retains a representation of the individual fingers, this could be exploited to provide the fine-grained control needed.'
-end-
The research was funded by the Wellcome Trust.

University of Oxford

Related Brain Activity Articles from Brightsurf:

Inhibiting epileptic activity in the brain
A new study shows that a protein -- called DUSP4 -- was increased in healthy brain tissue directly adjacent to epileptic tissue.

What is your attitude towards a humanoid robot? Your brain activity can tell us!
Researchers at IIT-Istituto Italiano di Tecnologia in Italy found that people's bias towards robots, that is, attributing them intentionality or considering them as 'mindless things', can be correlated with distinct brain activity patterns.

Using personal frequency to control brain activity
Individual frequency can be used to specifically influence certain areas of the brain and thus the abilities processed in them - solely by electrical stimulation on the scalp, without any surgical intervention.

Rats' brain activity reveals their alcohol preference
The brain's response to alcohol varies based on individual preferences, according to new research in rats published in eNeuro.

Studies of brain activity aren't as useful as scientists thought
Hundreds of published studies over the last decade have claimed it's possible to predict an individual's patterns of thoughts and feelings by scanning their brain in an MRI machine as they perform some mental tasks.

A child's brain activity reveals their memory ability
A child's unique brain activity reveals how good their memories are, according to research recently published in JNeurosci.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.

Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.

Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.

Read More: Brain Activity News and Brain Activity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.