Nav: Home

WSU researcher finds mechanism affecting alcohol consumption

August 30, 2016

PULLMAN, Wash.--A Washington State University researcher has found a mechanism that strongly influences whether or not an animal is likely to drink a lot of alcohol.

"It takes them from drinking the equivalent of three to four units of alcohol in one to two hours, down to one to two," said David Rossi, a WSU assistant professor of neuroscience.

Writing in the latest Journal of Neuroscience, Rossi and colleagues at the Oregon Health and Science University and the U.S. Veterans Administration Portland Health Care System said the mechanism offers a new target for drug therapies that can curb excessive drinking. It may be particularly effective among problem drinkers, half of whom are believed to have a genetically determined tendency to abuse alcohol.

The mechanism is found in the cerebellum, a part of the brain at the back of vertebrate skulls, in small neurons called granule cells. Sitting on the cells are proteins called GABAA receptors (pronounced "GABA A") that act like traffic cops for electrical signals in the nervous system.

When activated, the GABAA receptor suppresses the firing of neurons, or brain circuits. Benzodiazepines, which enhance GABAA signaling, reduce this excitability, which is why they are used to treat epilepsy.

Alcohol can also enhance GABAA receptor signaling and reduce firing in the brain, which is why it reduces anxiety and social inhibitions. In the cerebellum, it can lead to swaying, stumbling and slurred speech.

"You're inhibiting the circuit that executes normal motor function," said Rossi.

But alcohol does not act the same on every brain. In 2013, shortly before Rossi came to WSU from Oregon Health and Science University, he and his colleagues there linked the genes that influence ethanol consumption and the response of granule cell GABAA receptors to ethanol.

Much of their story is a tale of two specially bred mice.

The D2 mouse is a cheap drunk. After the equivalent of one or two drinks, it has trouble staying on a rotating cylinder.

"He won't drink much," said Rossi. "At most he'll have one or two drinks."

The B6 mouse, however, will stay on a rotating cylinder even after drinking three times as much alcohol, "which is beyond the drunk driving limit," said Rossi.

What's more, the D2 mouse is a teetotaler. After those first drinks, it stops. Under the right circumstances, the B6 mouse will binge.

"It mirrors the human situation," said Rossi. "If you're sensitive to the motor-impairing effects of alcohol, you don't tend to drink much. If you're not sensitive, you drink more."

In their earlier work, which was published in the journal Nature Neuroscience, Rossi and his colleagues saw clear differences in the way the cerebellar granule cell GABAA receptors reacted to alcohol in the two breeds of mice. In contrast to the D2 mouse, the cerebellar GABA receptors in the B6 mouse were suppressed by alcohol. Rossi called this "an obvious neural signature to a behavioral predilection to alcohol."

For the recent paper, Rossi and his colleagues injected a drug called THIP into the cerebellum of B6 mice. THIP activates the GABAA receptor, recreating the effect that alcohol has on low drinking D2 mice. It ended up deterring the B6 mice from drinking.

The finding, said Rossi, highlights a new region and new targets that can be manipulated "to deter excessive alcohol consumption, and potentially with fewer side effects than other existing targets and brain circuits."
-end-
Funding for the study, the bulk of which was performed at Oregon Health and Science University, came from the National Institute on Alcohol Abuse and Alcoholism, the American Heart Association and the Veterans Administration Portland Health Care System.

The work is in keeping with WSU's Grand Challenges, a suite of research initiatives aimed at large societal issues. It is particularly relevant to the challenge of sustaining health and its themes of healthy communities and individual health and wellness.

Washington State University

Related Neuroscience Articles:

Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.
The evolution of neuroscience as a research
When the first issue of the JDR was published, the field of neuroscience did not exist but over subsequent decades neuroscience has emerged as a scientific field that has particular relevance to dentistry.
Diabetes-Alzheimer's link explored at Neuroscience 2019
Surprising links exist between diabetes and Alzheimer's disease, and researchers are beginning to unpack the pathology that connects the two.
Organoid research revealed at Neuroscience 2019
Mini-brains, also called organoids, may offer breakthroughs in clinical research by allowing scientists to study human brain cells without a human subject.
The neuroscience of autism: New clues for how condition begins
UNC School of Medicine scientists found that a gene mutation linked to autism normally works to organize the scaffolding of brain cells called radial progenitors necessary for the orderly formation of the brain.
Harnessing reliability for neuroscience research
Neuroscientists are amassing the large-scale datasets needed to study individual differences and identify biomarkers.
Blue Brain solves a century-old neuroscience problem
In a front-cover paper published in Cerebral Cortex, EPFL's Blue Brain Project, a Swiss Brain Research Initiative, explains how the shapes of neurons can be classified using mathematical methods from the field of algebraic topology.
Characterizing pig hippocampus could improve translational neuroscience
Researchers have taken further steps toward developing a superior animal model of neurological conditions such as traumatic brain injury and epilepsy, according to a study of miniature pigs published in eNeuro.
The neuroscience of human vocal pitch
Among primates, humans are uniquely able to consciously control the pitch of their voices, making it possible to hit high notes in singing or stress a word in a sentence to convey meaning.
Study tackles neuroscience claims to have disproved 'free will'
For several decades, some researchers have argued that neuroscience studies prove human actions are driven by external stimuli -- that the brain is reactive and free will is an illusion.
More Neuroscience News and Neuroscience Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.