Nav: Home

'Blink' and you won't miss amyloids

August 30, 2018

Tiny protein structures called amyloids are key to understanding certain devastating age-related diseases. Aggregates, or sticky clumped-up amyloids, form plaques in the brain, and are the main culprits in the progression of Alzheimer's and Huntington's diseases.

Amyloids are so tiny that they can't be visualized using conventional microscopic techniques. A team of engineers at Washington University in St. Louis has developed a new technique that uses temporary fluorescence, causing the amyloids to flash, or "blink," and allowing researchers to better spot these problematic proteins.

"It has been pretty difficult, finding a way to image them in a non-invasive way -- not changing the way they come together -- and also figuring out a way to image them long-term to see how they clump and form larger structures," said Matthew Lew, assistant professor in the Preston M. Green Department of Electrical & Systems Engineering at the School of Engineering & Applied Science. "That was the focus of our research."

Currently, scientists seeking to visualize amyloids use large amounts of a fluorescent material to coat the proteins in a test tube. When using a fluorescence microscope, the amyloids glow. However, it isn't known how dyes that are permanently attached might alter the basic structure and behavior of the amyloid. It's also difficult to discern the nanoscale structures at play using this bulk experimental technique.

Lew, whose research focus includes super-resolution microscopy and single-molecule imaging, worked with his former Washington University colleague Jan Bieschke, now an associate professor of brain science at University College in London, to develop the new technique that makes them blink. It's called transient amyloid binding (TAB) imaging.

TAB uses a standard dye called thioflavin T, but instead of coating the amyloids, it temporarily sticks to them one at a time. The effect isn't permanent, and the amyloids emits light until the dye detaches, yielding a distinctive blinking effect. The researchers were able to use a fluorescence microscope to observe and record the blinks. They then localized the position of each blinking thioflavin and reconstructed a super-resolved picture of the exact amyloid structure.

"The thioflavin T behaved like a group of fireflies, lighting up anytime they come into contact with the amyloid," Bieschke said.

"What we saw were flashes of light over time," Lew said. "On our computer screens, you'd see these individual spots blinking in sequence. We were then able to overlay all these dots together, giving us a complete look at the structure. If you didn't separate them out, you'd see a blur."

The team tested the TAB technique on a variety of amyloid structures and were able to reconstruct images for all of them, over an extended period of time and at various stages of aggregation. Their results were recently published in the journal ChemBioChem.

"There's an intimate connection between seeing the proteins' structure and learning how these proteins interact with neurons," Lew said. "Ultimately, we need the imaging to understand all of the different shapes and structures that these proteins are building over time, and how that relates to the death of cells later on."
-end-
Kevin Spehar, Tianben Ding, Yuanzi Sun, Niraja Kedla, Jin Lu, George R. Nahass, Matthew D. Lew, and Jan Bieschke. Super-resolution imaging of amyloid structures over extended times using transient binding of single thioflavin-t molecules ChemBioChem DOI 10.1002/cbic.201800352

Washington University in St. Louis

Related Proteins Articles:

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.