Scientists uncover key new molecules that could help to tackle tooth loss and regeneration

August 30, 2019

Our teeth take thousands of bites per day, and understanding exactly what holds them in place and how is key to helping people live with their own teeth for longer.

Now new research published in the Journal of Dental Research has shed light on the science behind the formation of the periodontal ligament, which helps keep the tooth stable in the jawbone. This improved understanding will also help scientists work towards regenerating the tissues that support teeth.

The study, led by the Universities of Plymouth and Geneva, shows how a *signalling pathway called Notch, which is known to be activated in stem cells and cancer, is important for periodontal ligament development.

*A signalling pathway describes how a group of molecules in a cell work together to control one or more cell functions, such as cell division or cell death. After the first molecule in a pathway receives a signal, it activates another molecule. This process is repeated until the last molecule is activated and the cell function is carried out.

Abnormal activation or inhibition of certain signalling pathways can lead to cancer and other conditions, including problems with tissue regeneration.

A key finding in the new study, which was conducted in rodent teeth, is that Lamin A, a cell nuclear protein, is a direct target of Notch pathway.

Lamin A is best known for its mutated form progerin, which causes fatal 'early ageing' disease, Progeria syndrome - but by uncovering its involvement in periodontal ligament formation, scientists have better insight into how molecules function during tissue regeneration, and how the process could be affected during disease.

Corresponding author Dr Bing Hu, Associate Professor of Oral and Dental Health Research in Peninsula Dental School at the University of Plymouth, said: "The periodontal ligament starts to properly hold the tooth in the jawbone when a tooth breaks out and becomes functional.

"Understanding the mechanisms of how periodontal ligaments develop and the molecules that assist the tissue becoming mature is really important for our understanding of tissue regeneration and repair.

"The next steps are for us to see if and how the molecules we have identified in this study can be translated into a human-only model and, in turn, how they are affected in both healthy and diseased conditions."

Dr Hu is also part of the University's Institute of Translational and Stratified Medicine (ITSMed).

This research is a part of the MD-PhD thesis of Dr Balázs Dénes of the University of Geneva, entitled Post-emergent tooth eruption: eruption rate, periodontal ligament maturation and cell signalling, directed by Professor Stavros Kiliaridis.

Dr Dénes said: "We believe that our findings are an important stepping stone to better dental treatments in situations involving the periodontal ligament, such as gum disease (periodontitis), tooth restoration by dental implants or orthodontic tooth movement."
-end-
The full study, entitled Notch coordinates periodontal ligament maturation through regulating Lamin A, is now available to view in the Journal of Dental Research (doi: 10.1177/0022034519871448).

This study was supported by the Swiss National Science Foundation; the European Union Marie Sk?odowska-Curie Actions; the European Regional Development Fund and the Biotechnology and Biological Sciences Research Council (BBSRC).

University of Plymouth

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.