ESC Congress 2004: Embryonic endothelial progenitor cells help overcome MI in pigs

August 31, 2004

Myocardial infarction, caused by coronary artery occlusion, can lead up to loss of muscle tissue of the heart and functional detriment, even at times where rapid reperfusion strategies like PTCA or thrombolysis are at hand. In this study, we investigated embryonic endothelial progenitor cells as therapy for ischemia reperfusion injury in a large animal model (pig). This model, which induces an infarct of predictable size in a pig heart, was used to test the cardioprotective potential of the embryonic cells, since adult endothelial progenitor cells (EPCs) have been used in similar models with success and are utilized in ongoing patient studies.

Endothelial progenitor cells are cells which are able to differentiate into endothelial cells and replace the inner vascular wall.In this study, we used 5x106 embryonic endothelial progenitor cells, a number relatively modest with respect to the size of the targeted infarct region. To compensate for this modest cell number, we used a regional delivery system, called retroinfusion, which infuses the cells through the vein draining the infarct region. (Previous studies had shown a substantial increase of efficacy using this application mode).

We now found that indeed retroinfusion of 5x106 embryonic EPCs sufficed to reduce infarct size and improve regional myocardial function in the ischemic area. Interestingly, systemic application of the same number of cells had no significant effect, indicating the relevance of the regional application. The superiority of the regional delivery was confirmed in tests using radioactively labeled cells, where retroinfusion yielded a sixfold higher amount of recruited cells in the heart than systemic application.

Currently, embryonic EPCs are an experimental tool trying to investigate the pathways utilized by these cells to protect the ischemic heart. A variety of efforts is underway to characterize the embryonic EPCs further and to potentially enhance their performance. Because of species differences, it is unclear whether a similar approach can be used in patients.

However, a similar cell line might be derived from human embryonic stem cells, and become a helpful tool for ischemia/reperfusion injury of the heart in the future.
-end-
C Kupatt (Munich, DE)

This press release accompanies both a presentation and an ESC press conference given at the ESC Congress 2004. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology

European Society of Cardiology

Related Embryonic Cells Articles from Brightsurf:

New mechanisms that regulate pluripotency in embryonic stem cells are discovered
A study by researchers at the Center for Cell-Based Therapy, which is supported by FAPESP, identified microRNAs involved in pluripotency maintenance and cell differentiation.

Embryonic mammary gland stem cells identified
Research team led by Prof. C├ędric Blanpain identified the mechanisms that regulate mammary gland development.

New tools to study the origin of embryonic stem cells
Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo.

Embryonic white blood cells needed in adulthood
Leukocytes of the macrophage series are needed for defence reactions against microbial infections.

Scientists approve the similarity between reprogrammed and embryonic stem cells
Researchers from the Vavilov Institute of General Genetics, Research Institute of Physical Chemical Medicine and Moscow Institute of Physics and Technology (MIPT) have concluded that reprogramming does not create differences between reprogrammed and embryonic stem cells.

Drug makes stem cells become 'embryonic' again
If you want to harness the full power of stem cells, all you might need is an eraser -- in the form of a drug that can erase the tiny labels that tell cells where to start reading their DNA.

Oncogene controls stem cells in early embryonic development
Many animal species delay the development of their embryos to ensure that their offspring is born at a favorable time.

Breakthrough in generating embryonic cells that are critical for human health
Critical for human development and health, neural crest cells arise early in the development of vertebrates.

Are embryonic stem cells and artificial stem cells equivalent?
Harvard Stem Cell Institute (HSCI) researchers at Massachusetts General Hospital and Harvard Medical School have found new evidence suggesting some human induced pluripotent stem cells are the 'functional equivalent' of human embryonic stem cells, a finding that may begin to settle a long running argument.

UCSF researchers control embryonic stem cells with light
UCSF researchers have for the first time developed a method to precisely control embryonic stem cell differentiation with beams of light, enabling them to be transformed into neurons in response to a precise external cue.

Read More: Embryonic Cells News and Embryonic Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.