Where bonehead investments come from

August 31, 2005

The ups and downs of the stock market reflect investors' balance between greed and fear, goes an old saying. Until now, though, economists have not had a way to incorporate such emotions into their models of investors' strategies. However, in the September 1, 2005, issue of Neuron, Camelia M. Kuhnen and Brian Knutson of Stanford University report the identification of two key brain regions activated before people make risk-seeking versus risk-aversion investment mistakes.

They said that their findings may help to "ultimately improve the design of economic institutions so as to facilitate optimal investor behavior." They also said they believe their experimental design--which they call the "Behavioral Investment Allocation Strategy"--enables researchers to bring the real-life equivalent of individual investment behavior into the laboratory.

In their experiments, the researchers asked volunteers to make investment decisions among two stocks and a bond by pressing buttons. Before each trial run, the researchers "showed them the money," telling the subjects that they would receive a percentage of the cash that they made by investing or would lose cash from their participation fee if they were not successful. Without telling the subjects, the researchers randomly designated one of the stocks a "bad" stock more likely to lose money or as a "good" stock that was more likely to make money. The bond was a safe but conservative investment.

The researchers then scanned the subjects' brains using functional magnetic resonance imaging (fMRI) as they proceeded through a series of decisions on investing in the pairs of the stocks or with the bond and learned the outcomes of those decisions. The commonly used technique of fMRI utilizes harmless magnetic fields and radio signals to map detailed blood flow in brain regions, which reflects activity.

The researchers' analyses of the subjects' choices and brain activity revealed that an area called the nucleus accumbens (NAcc) tended to distinctively activate before the researchers made investing mistakes that were "risk seeking." That is, they decided to invest in a stock whose history had shown it to be "bad."

Conversely, found the researchers, the brain area called the anterior insula activated before the subjects made "risk-averse" mistakes--for example, investing in the bond when they had an opportunity to invest in a "good" stock.

The researchers wrote that their results "indicate that, above and beyond contributing to rational choice, anticipatory neural activation may also promote irrational choice. Thus, financial decision making may require a delicate balance--recruitment of distinct circuits may be necessary for taking or avoiding risks, but excessive activation of one mechanism or the other may lead to mistakes."

Kuhnen and Knutson concluded that "Overall, these findings suggest that risk-seeking choices (such as gambling at a casino) and risk-averse choices (such as buying insurance) may be driven by two distinct neural circuits involving the NAcc and the anterior insula. The findings are consistent with the notion that activation in the NAcc and anterior insula, respectively, index positive and negative anticipatory affective states and that activating one of these two regions can lead to a shift in risk preferences. This may explain why casinos surround their guests with reward cues (e.g., inexpensive food, free liquor, surprise gifts, potential jackpot prizes)--anticipation of rewards activates the NAcc, which may lead to an increase in the likelihood of individuals switching from risk-averse to risk-seeking behavior. A similar story in reverse may apply to the marketing strategies employed by insurance companies," they wrote.
-end-
The researchers include Camelia M. Kuhnen and Brian Knutson of Stanford University. This research was funded in part by a NIA Seed Grant and a NARSAD Young Investigator Award.

Kuhnen et al.: "The Neural Basis of Financial Risk-Taking" Neuron, Vol. 47, 763-770, September 1, 2005, DOI
10.1016/j.neuron.2005.08.008
www.neuron.org

Cell Press

Related Decisions Articles from Brightsurf:

Consumers value difficult decisions over easy choices
In a paper co-authored by Gaurav Jain, an assistant professor of marketing in the Lally School of Management at Rensselaer, researchers found that disfluency, or the difficulty for an individual to process a message, increases people's attitudes toward that message after a time delay.

Evolutionary theory of economic decisions
When survival over generations is the end game, researchers say it makes sense to undervalue long shots that could be profitable and overestimate the likelihood of rare bad outcomes.

Decisions made for incapacitated patients often not what families want
Researchers from Regenstrief Institute and Indiana University report in a study published in JAMA Network Open that nearly half of the time medical treatments and orders received for incapacitated patients were not compatible with goals of care requested by their surrogate decision makers.

Which COVID-19 models should we use to make policy decisions?
A new process to harness multiple disease models for outbreak management has been developed by an international team of researchers.

For complex decisions, narrow them down to two
When choosing between multiple alternatives, people usually focus their attention on the two most promising options.

Fungal decisions can affect climate
Research shows fungi may slow climate change by storing more carbon.

How decisions unfold in a zebrafish brain
Researchers were able to track the activity of each neuron in the entire brain of zebrafish larvae and reconstruct the unfolding of neuronal events as the animals repeatedly made 'left or right' choices in a behavioral experiment.

Best of the best: Who makes the most accurate decisions in expert groups?
New method predicts accuracy on the basis of similarity.

How do brains remember decisions?
Mammal brains -- including those of humans -- store and recall impressive amounts of information based on our good and bad decisions and interactions in an ever-changing world.

How we make complex decisions
MIT neuroscientists have identified a brain circuit that helps break complex decisions down into smaller pieces.

Read More: Decisions News and Decisions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.