Danish scientists solve old blood mystery

August 31, 2012

Scientists at the research centre MEMBRANES at Aarhus University, Denmark, have completed an old puzzle, which since the 60s from many sides has been regarded as impossible to complete. The challenge was to solve the structure of the protecting protein complex that forms when haemoglobin is released from red cells and becomes toxic. This toxic release of haemoglobin occurs in many diseases affecting red cell stability, e.g. malaria.

Technically, the most important finding in this report in Nature is a high-resolution three-dimensional mapping of the so-called 'haptoglobin-haemoglobin complex'.

"After many failing experiments, our breakthrough came when we gave up using human material and went to the local slaughterhouse to purchase pig blood. Not a particular high-technological approach, but this transition from studying human blood to blood from a species with close homology had magic effects. After running into dead ends for two years and trying out the most complex gene-technological ways to produce the right material, it suddenly worked", says Søren Kragh Moestrup, the head of the research group at Department of Biomedicine.

The discovery provides new essential information on haemoglobin that makes up most of the red cell interior. Haemoglobin is an essential blood component for transport of oxygen, but it becomes toxic with potential damaging effects on tissues, in particular the kidneys, when it is released from the red cells. An excessive release can occur in many diseases, such as malaria and other infections.

However, the body has a sophisticated defence system. The first line defence is carried out by the blood protein haptoglobin, which captures haemoglobin and gates it to a receptor that engulfs the haemoglobin-haptoglobin complex. This function of the receptor named CD163 was originally discovered by the same group.

"We have now shown how this unique protein complex forms by generation of a detailed 3-dimensional map of each atom. This shows for the first time how the complex is formed and explains the tight protein association", says PhD Christian Brix Folsted Andersen. He has together with Master's student Morten Torvund-Jensen been an essential driving force in the project.

The results have also led to an unexpected discovery of a novel type of protein structure and a new patent submission on exploitation of the discovery for use in generation of a new type of synthetic proteins to be used in therapy and diagnostics.
-end-
The Nature paper "Structure of the haptoglobin-haemoglobin complex" is available.

MEMBRANES is a research centre at Aarhus University with focus on membrane proteins.

The present international and interdisciplinary project has been headed by Department of Biomedicine, Aarhus University, with participation of Science & Technology, Aarhus University and experts from Brazil and Norway.

Financial support from The Lundbeck Foundation, The Novo Nordisk Foundation, The Research Council of Norway, The European Research Council and The Danish Council for Independent Research.

More information:

Professor, DMSc Søren Kragh Moestrup, MEMBRANES, Department of Biomedicine, Aarhus University, Denmark. Mobile +45 28 99 22 82; skm@biokemi.au.dk

Assistant professor, PhD Christian Brix Folsted Andersen, MEMBRANES, Department of Biomedicine, Aarhus University, Denmark. Mobile + 45 30 26 48 55; cbfa@biokemi.au.dk

Aarhus University

Related Diseases Articles from Brightsurf:

Understanding the spread of infectious diseases
Physicists at M√ľnster University (Germany) have shown in model simulations that the COVID-19 infection rates decrease significantly through social distancing.

Parkinson's disease is not one, but two diseases
Researchers around the world have been puzzled by the different symptoms and varied disease pathways of Parkinson's patients.

New gene implicated in neuron diseases
Healthy NEMF helps the cell recycle garbled protein fragments. But several mutant forms resulted in neuromuscular, neurodegenerative or other ALS-like disease, the scientists found.

Stretching your legs may help prevent diseases such as heart diseases and diabetes
New research published today in The Journal of Physiology shows that 12 weeks of easy-to-administer passive stretching helps improve blood flow by making it easier for your arteries to dilate and decreasing their stiffness.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

How many rare diseases are there?
Dr. Tudor Oprea says a better method for classifying rare diseases will lead to improved patient care.

A vaccine against chronic inflammatory diseases
In animals, a vaccine modifying the composition and function of the gut microbiota provides protection against the onset of chronic inflammatory bowel diseases and certain metabolic disorders, such as diabetes and obesity.

Ants fight plant diseases
New research from Aarhus University shows that ants inhibit at least 14 different plant diseases.

New, noninvasive test for bowel diseases
Gut diseases such as inflammatory bowel disease (IBD) are increasingly prevalent worldwide, especially in industrialized countries.

What is known -- and not known -- about heart muscle diseases in children
Cardiomyopathies (heart muscle diseases) in children are the focus of a new scientific statement from the American Heart Association that provides insight into the diagnosis and treatment of the diseases as well as identifying future research priorities.

Read More: Diseases News and Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.