Nav: Home

Using nanotechnology to fight cancer

August 31, 2015

Northwestern University, a leader in cancer nanotechnology research, has received a five-year, $11.7 million grant from the National Cancer Institute (NCI) to use nanotechnology to develop next-generation cancer treatments.

Extensive efforts to battle cancer during the last few decades have resulted in overall cancer death rates declining. Major challenges still remain, however, in understanding, detecting and treating this highly complex disease, and cancer continues to be a leading cause of death in the U.S. and worldwide.

With the NCI support, the new Northwestern University Center for Cancer Nanotechnology Excellence (Northwestern CCNE) will use nucleic-acid-based nanoconstructs called Spherical Nucleic Acids (SNAs) to gain access to intracellular environments, discover new aspects of cancer biology and create effective cancer treatment options.

SNAs are nontoxic to humans, making them a versatile tool in medicine. They were invented at Northwestern in 1996 and have been used for therapeutic purposes since 2010.

Under the direction of principal investigators, Chad A. Mirkin and Dr. Leonidas C. Platanias, the Northwestern CCNE combines the strengths and resources of the International Institute for Nanotechnology (IIN) and the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

The center will unite scientists, engineers and clinicians from diverse fields, such as nanoscience, cancer biology, chemistry, materials science, physics, engineering and medicine. They will work towards the common goal of developing SNA nanostructures poised to enter the clinic as revolutionary, cancer-killing agents to improve and save the lives of patients suffering from glioblastoma multiforme and prostate cancer, two of the most deadly forms of cancer.

Recently, the field of nanotechnology has offered up a multitude of interesting structures, materials and tools that are showing promise in the development of new detection and treatment methodologies. These methods could permit highly efficacious, targeted and personalized solutions for the prediction of prognoses as well as for early diagnosis and treatment of patients struggling with advanced cancers.

In addition, nanoscience and technology are enabling fundamental discoveries in the fields of cancer biology, genetics and oncology. Within these realms, nucleic-acid-based nanostructures such as SNAs offer interesting opportunities, because they can be used to access and interact in unique ways with biological systems and structures, including cancer cells and tumors, modulating their intracellular genetic pathways and reprogramming their cellular biology.

The CCNE will feature three projects (one discovery-based and two translational) and one core facility. The center also will have for-profit partners united to provide novel nanotechnology-based solutions to daunting and complex issues in cancer research and treatment.

"We are pleased to see continued participation of Northwestern University's IIN and Lurie Cancer Center in the NCI Alliance for Nanotechnology in Cancer program," said Piotr Grodzinski, director of the NCI Office of Cancer Nanotechnology Research.

"Professor Mirkin and his colleagues have established a highly successful effort and are capable of rapid innovation and translation of pioneering science to clinical applications," he said. "Their NanoFlare technology is an outstanding example of this."

NanoFlares are spherical nucleic acids with gold nanoparticle cores outfitted with single-stranded DNA "flares." NanoFlare technology is the first genetic-based approach that is able to detect live cancer cells in the bloodstream, long before they settle and form a dangerous tumor.

"The support from the National Cancer Institute will enable researchers to continue to make significant cancer-relevant discoveries that ultimately can be transferred to the clinic and profoundly impact the way cancers are studied and treated," Platanias said.

Platanias is director of the Lurie Cancer Center and the Jesse, Sara, Andrew, Abigail, Benjamin and Elizabeth Lurie Professor of Oncology at Northwestern University Feinberg School of Medicine.

Building upon the significant advances in cancer research and nanotechnology obtained at Northwestern during the past 10 years (the NCI has supported a Northwestern CCNE since 2005), and operating within the framework of a single university, the Northwestern CCNE will optimize the intensive level of integration and collaboration required to create an accelerated pathway -- from conception to clinical trial -- for development of nanomaterials and nanodevices to overcome cancer.

"Nanotechnology is a key driver of advances in cancer detection and treatment, and Northwestern has played a major role in developing this field," Mirkin said. "We are grateful for this opportunity to continue our work in this important area."

Mirkin is director of the IIN, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and a Lurie Cancer Center member. He also is professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering.

In addition to research, the Northwestern CCNE is committed to educating and training scientists who can work at the interface of nanotechnology and cancer research; encouraging and supporting trans-alliance training opportunities and collaborations; and providing effective mechanisms to disseminate knowledge to the larger community.

Some of the strategies to achieve these goals include support for trans-alliance research and pilot projects, integrative training in nanotechnology and cancer, an intramural seminar series, medical student summer fellowships in nanotechnology, summer research programs for undergraduates, nanotechnology boot camps for clinicians and annual mini-symposia.
-end-
The IIN is an umbrella organization that represents and unites more than $800 million in nanotechnology research, educational programs and infrastructure. The Lurie Cancer Center is an NCI-designated, comprehensive, university-based, matrix cancer center conducting a broad range of multidisciplinary basic, clinical and population science research with more than $167 million dollars in annual extramural funding.

Northwestern University

Related Prostate Cancer Articles:

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.
Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.
First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.
Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.
CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.
Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.
Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.
ASCO and Cancer Care Ontario update guideline on radiation therapy for prostate cancer
The American Society of Clinical Oncology (ASCO) and Cancer Care Ontario today issued a joint clinical practice guideline update on brachytherapy (internal radiation) for patients with prostate cancer.
Patient prostate tissue used to create unique model of prostate cancer biology
For the first time, researchers have been able to grow, in a lab, both normal and primary cancerous prostate cells from a patient, and then implant a million of the cancer cells into a mouse to track how the tumor progresses.
Moffitt Cancer Center awarded $3.2 million grant to study bone metastasis in prostate cancer
Moffitt researchers David Basanta, Ph.D., and Conor Lynch, Ph.D., have been awarded a U01 grant to investigate prostate cancer metastasis.
More Prostate Cancer News and Prostate Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.