Technique could aid mass production of biodegradable plastic

August 31, 2017

Introducing a simple step to the production of plant-derived, biodegradable plastic could improve its properties while overcoming obstacles to manufacturing it commercially, says new research from the University of Nebraska-Lincoln and Jiangnan University.

That step? Bringing the heat.

Nebraska's Yiqi Yang and colleagues found that raising the temperature of bio-plastic fibers to several hundred degrees Fahrenheit, then slowly allowing them to cool, greatly improved the bio-plastic's normally lackluster resistance to heat and moisture.

Its thermal approach also allowed the team to bypass solvents and other expensive, time-consuming techniques typically needed to manufacture a commercially viable bio-plastic, the study reported.

Yang said the approach could allow manufacturers of corn-derived plastic -- such as a Cargill plant in Blair, Nebraska -- to continuously produce the biodegradable material on a scale that at least approaches petroleum-based plastic, the industry standard. Recent research estimates that about 90 percent of U.S. plastic goes unrecycled.

"This clean technology makes possible (the) industrial-scale production of commercializable bio-based plastics," the authors reported.

NOT EASY BEING GREEN

The approach uses polylactic acid, or polylactide, a component of biodegradable plastic that can be fermented from corn starch, sugarcane and other plants. Though most plastics are made from petroleum, polylactide has emerged as an environmentally friendlier alternative.

Yet polylactide's susceptibility to heat and moisture, particularly during the manufacturing process, has limited its use in textiles and other industries. In searching for ways to address the issue, researchers long ago discovered that mixing mirror-image polylactide molecules -- generally referred to as "L" and "D" -- could yield stronger molecular interactions and better performance than using just the L or D alone.

But there was another catch. Convincing a reasonable proportion of the L and D molecules to permanently pair up is difficult, often forcing researchers to concoct costly and complicated matchmaking schemes. Some of the most common involve the use of solvents or other chemical agents whose disposal can cause environmental issues of their own.

"The problem is that people couldn't find a way to make it work so that you could use it on large scales," said Yang, Charles Bessey Professor of biological systems engineering and of textiles, merchandising and fashion design. "People use nasty solvent or other additives. But those are not good for continuous production.

"We don't want to dissolve the polymers and then try to evaporate the solvents, and then have to consider reusing them. That's just too expensive (and) not realistic."

HEATING UP

Yang and his colleagues decided to pursue another approach. After mixing pellets of the L and D polylactide and spinning them into fibers, the team rapidly heated them to as hot as 400 degrees Fahrenheit.

The resulting bio-plastic resisted melting at temperatures more than 100 degrees higher than did plastics containing only the L or D molecules. It also maintained its structural integrity and tensile strength after being submersed in water at more than 250 degrees, approximating the conditions that bio-plastics must endure when being incorporated into dyed textiles.

The textile industry produces about 100 million tons of fibers annually, Yang said, meaning that a feasible green alternative to petroleum-based manufacturing could pay off both environmentally and financially.

"So we just used a cheap way that can be applied continuously, which is a big part of the equation," Yang said. "You have to be able to do it continuously in order to have large-scale production. Those are important factors."

Though the team has demonstrated continuous production on a smaller scale in Yang's lab, he said it will soon ramp up to further illustrate how the approach might be integrated into existing industrial processes.
-end-
The team's findings will be published in a November print edition of Chemical Engineering Journal. Yang authored the study with Helan Xu, a former Nebraska researcher now at Jiangnan University; Bingnan Mu, graduate student in textiles, merchandising and fashion design at Nebraska; and Jiangnan University's Gangwei Pan, Bomou Ma and Jing Yang.

The researchers received support from the U.S. Department of Agriculture's National Institute of Food and Agriculture, the Agricultural Research Division at the University of Nebraska-Lincoln, and the China Scholarship Council.

University of Nebraska-Lincoln

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.