New research delivers hope for reef fish living in a high CO2 world

August 31, 2017

Just as when a camera lens comes into focus, the latest research published today sharpens understanding of the implications of ocean acidification on reef fish behaviour, yielding promising results for their current and near-future survival.

Chemical changes in the ocean, as a result of climate change, are leading to a more acidic environment, referred to as 'ocean acidification' (OA). In a laboratory setting, these changes have been shown to lead to a range of risky behaviours in the affected fish, with some fish unable to flee from their finned foes effectively.

But, when researchers recalibrated experiments to adjust for natural daily changes in concentrations of dissolved carbon dioxide (CO2), the primary chemical driver of OA, they found that the fish were less affected than previously thought.

"Shallow water habitats where reef fish live can experience substantial natural fluctuations in water chemistry throughout the day," explained senior author Professor Philip Munday, of the ARC Centre of Excellence for Coral Reef Studies (CoralCoE) at James Cook University.

"For example, carbon dioxide levels on coral reefs are often much lower during the day than they are at night."

"Our data suggests that these natural daily changes in water chemistry are enough to provide fish with a recovery period, reducing their sensitivity to higher carbon dioxide levels," said Michael D. Jarrold, lead author of the study and PhD student at James Cook University.

The study published today in Scientific Reports, utilised state-of-the-art facilities at James Cook University and at the Australian Institute of Marine Science's National Sea Simulator (SeaSim) to mimic the natural conditions of a coral reef environment.

"It's the first time these dynamic natural conditions have been reproduced in a laboratory setting to test their potential influence on the behaviour of coral reef fish," explained Mr. Jarrold.

"We are thrilled about what we've found," he added. "Our results provide a greater level of optimism for reef fish populations in the future."

Previous OA research has largely used stable, open ocean conditions to guide the experimental design.

"Broadly speaking, such studies reported reduced anti-predator responses, as compared with the control group," said Prof Munday.

"Such abnormal behaviours were feared to pose significant ecological consequences for fish populations," he explained.

The researchers' ability to precisely control the complex combinations of environmental variables required to accurately simulate both naturally occurring and human-influenced water conditions was crucial to achieving this breakthrough.

"With the world's most advanced experimental marine technology at our finger tips, and the considerable efforts of our specially skilled team, the SeaSim was able to recreate the natural daily CO2 cycles found on the reef," said Craig Humphrey, co-author and SeaSim precinct manager at the Australian Institute of Marine Science.

"We're excited to play a part in such fantastic and novel research."
-end-
The paper titled: "Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification" is available online at: http://www.nature.com/articles/s41598-017-10378-y

ARC Centre of Excellence in Coral Reef Studies

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.