X-ray footprinting solves mystery of metal-breathing protein

August 31, 2017

Scientists have discovered the details of an unconventional coupling between a bacterial protein and a mineral that allows the bacterium to breathe when oxygen is not available.

The research, conducted by a team of scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), could lead to new innovations in linking proteins to other materials for bio-based electronic devices - such as sensors that can diagnose disease or detect contaminants. It could also help researchers to understand and control the chemical reactions sparked by these protein-material interactions.

"Moving electrons to metals can cause different minerals to grow or dissolve. Studying how a protein does this can help us understand both how organisms remodel their environment and make biominerals for teeth or protection," said Caroline Ajo-Franklin, a staff scientist in the Biological Nanostructures Facility at Berkeley Lab's Molecular Foundry, which is a nanoscience research center.

Ajo-Franklin led the study, published online in the Journal of the American Chemical Society earlier this month.

"Understanding what these interactions between proteins and materials look like can help us design them better," she added, "and give us insight on how to connect living cells with devices."

Researchers relied on an X-ray-based technique at Berkeley Lab's Advanced Light Source, known as "footprinting," to pinpoint the chemical connections between the bacterial protein and nanoparticles composed of iron and oxygen.

The study, which identified a surprisingly small and weak binding site, also benefited from tools and expertise at the Lab's Molecular Foundry; and the Lab-led Joint BioEnergy Institute, which specializes in biofuels research.

The structure of this exotic protein had been previously mapped in isolation with atomic-scale detail by other research groups using X-ray crystallography, which required a crystallized form of the protein. But scientists didn't know how it bound to the metal-containing mineral - conventional techniques can't see this binding process.

In 2014, Ajo-Franklin learned from Corie Ralston, another Lab researcher who works in the Molecular Biophysics and Integrated Bioimaging (MBIB) Division, about the X-ray mass spectrometry footprinting technique, an innovative way to precisely probe proteins and their surroundings with X-rays at the Advanced Light Source.

Ajo-Franklin and Ralston were each pursuing separate Laboratory Directed Research and Development projects, and they saw that the two efforts could actually be complementary.

Ralston had adopted the X-ray footprinting technique from her former advisor, Mark Chance, a professor at Case Western Reserve University who established the X-ray footprinting technique at Brookhaven National Laboratory on Long Island, N.Y. This X-ray technique is only available at the ALS and Brookhaven's National Synchrotron Light Source II (NSLS-II).

"Footprinting can tell you how proteins are interacting," Ralston said. "It can provide structural and dynamics information about proteins in close to their native environment."

The protein selected for the study is from a metal-reducing bacterium, Shewanella oneidensis, which "eats sugar and basically breathes minerals" when oxygen is unavailable, Ajo-Franklin noted. "One of the reason these organisms are so much fun to study is that they interact with a wide range of materials."

After Tatsuya Fukushima, a former Lab scientist who was a co-lead author of the study, found a suitable way to prepare the protein and nanoparticles in a liquid solution for X-ray studies, Sayan Gupta, an X-ray footprinting expert in Berkeley Lab's MBIB Division, used an X-ray beamline at the Advanced Light Source to study the samples.

"We are catching the snapshots of the state of this molecule at a particular time," Gupta said. "It's a simple technique and gives you lots of information about a protein's native state."

In this technique, X-rays produce highly reactive molecules known as hydroxyl radicals as they pass through the liquid solution surrounding the protein. These radicals modify the protein in a way that allows scientists to pinpoint slight chemical variations where the protein is in touch with the solution.

The regions of the protein that are interacting with other proteins or materials are protected from the radicals and not subject to the chemical alterations. The locations where the protein is not altered indicate where the binding occurs.

In the latest study, these chemical snapshots produced by the X-ray footprinting technique at different points in time were subsequently analyzed using a technique known as mass spectrometry at the Joint BioEnergy Institute.

A detailed analysis by Fukushima revealed how the protein connected to the mineral.

"The biggest finding, that was quite surprising, was that our proteins bind relatively weakly," Ajo-Franklin said. "Most proteins that interface with materials bind really tightly," changing shape as they form this connection. This particular protein doesn't appear to change shape at all and only interacts with the mineral in a small area, requiring about five times less binding energy, by comparison, than typical proteins that form biominerals.

That actually makes a lot of sense, she added. "The job of this protein is to transfer electrons to the mineral, so it doesn't have to be in contact for very long."

The research team is now working to study how this and similar proteins interact with a range of minerals.

"There are a bunch of proteins in this family," Ajo-Franklin said. "We are really excited to see how these proteins interact with different materials. Do they all use the same binding strategy?"

This study already provides ideas on how to redesign these proteins to make better electronic connections and thus more sensitive bioelectronic sensors - a project Ajo-Franklin is working on.
The Molecular Foundry, Advanced Light Source, and National Synchrotron Light Source II are DOE Office of Science User Facilities that are available to staff and visiting scientists from the global scientific community. The work was supported by the DOE Office of Basic Energy Sciences and by the DOE's Lab Directed Research and Development program.

Find out more about Caroline Ajo-Franklin's research: http://cafgroup.lbl.gov/.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

DOE/Lawrence Berkeley National Laboratory

Related Mass Spectrometry Articles from Brightsurf:

Discovery of a new mass extinction
It's not often a new mass extinction is identified; after all, such events were so devastating they really stand out in the fossil record.

How vitamin C could help over 50s retain muscle mass
New research shows that vitamin C could help over 50s retain muscle mass in later life.

Oncotarget: Tumor markers for carcinoma identified by imaging mass spectrometry
Volume 11, Issue 28 of Oncotarget features 'Lipid and protein tumor markers for head and neck squamous cell carcinoma identified by imaging mass spectrometry' by Schmidt et, al. which reported that the authors used MALDI imaging mass spectrometry and immunohistochemistry to seek tumor-specific expression of proteins and lipids in HNSCC samples.

Nontargeted mass spectrometry reveals PFAS substitutes in New Jersey soils
Using a nontargeted mass-spectral approach, researchers identified the presence of chloro-perfluoro-polyether-carboxylate compounds (ClPFPECAs) in soils across the state of New Jersey.

Large-scale analysis of protein arginine methylation by mass spectrometry
In this research, the researchers offer an overview on state-of-the-art approaches for the high-confidence identification and accurate quantification of protein arginine methylation by high-resolution mass spectrometry methods, which comprise the development of both biochemical and bioinformatics methods.

Proximity of hospitals to mass shootings in US
Nontrauma center hospitals were the nearest hospitals to most of the mass shootings (five or more people injured or killed by a gun) that happened in the US in 2019.

Chemists use mass spectrometry tools to determine age of fingerprints
Chemists at Iowa State University may have solved a puzzle of forensic science: How do you determine the age of a fingerprint?

Keeping guns away from potential mass shooters
Researchers from Michigan State University measured the extent to which mass shootings are committed by domestic violence perpetrators, as well as identyifying how they illegally obtain guns, suggesting how firearm restrictions may prevent these tragedies.

Who is left behind in Mass Drug Administration?
Ensuring equity in the prevention of neglected tropical diseases (NTDs) is critical to reach NTD elimination goals as well as to inform Universal Health Coverage (UHC).

A mechanism capable of preserving muscle mass
By studying the young and aging muscles in mice, researchers from the Myology Research Center (Sorbonne Universite-Inserm) of the Institute of Myology identified a protein, CaVbeta1E that activates the factor GDF5.

Read More: Mass Spectrometry News and Mass Spectrometry Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.